"

N SYBASE

Sybase® jConnect for JIDBC™
Programmer’s Reference

jConnect for JIDBC
Version 4.2 and 5.2

Document I D: 39001-01-0520-01
Last revised: October 1999

Copyright © 1989-1999 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software descritefihestiad
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax @45) 229-9

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax numkber. All othe
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only atoteepldely s
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by alectr@dns,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server EnterpriserReplicatio
Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Server, Enterprise Application Studio, Enterprise
Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, Netimpact, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit,
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare
Desktop, PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver,
Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S
Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial
Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System Xl (logo), SystemTools, Tabular Data Stream,
Transact-SQL, Translation Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 9/99

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) 620RYRS
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

About This Book

CHAPTER 1

CHAPTER 2

... vii
INEFOAUCTION 1o 1
WHhAL IS IDBEC? ..ttt ettt e e 2
What iS JCONNECL? ...vvviiieei ittt e e 4
Programming INfOrmationccccooiiiiiiiiiiii e, 5
Setting UpP JCONNECTveiiiiiiiiiiiiiice et 6
Setting the JCONNECE VEISIONcooviviviiiiieeiiiiiieieee e 6
Invoking the JCONNECt DIVErccvvveeiiiiiiiiiiiee e 10
Establishing @ Connection............ccccviiiiiiiiiie i 12
Setting Connection PropertieS.........cccvvvvieeeiiiiiiieeeiee i 12
Connecting to Adaptive Server Enterpriseccccceeeevviivvnnen. 18
Connecting to Adaptive Server Anywhere..........cccccceeeeevcvnneen. 19
Connecting to a Server Using INDIccccceeeviiiiiiieee e, 20
Implementing Custom Socket Plug-Insccccceeiiiiiiiieec e, 26
SYBSOCKET_FACTORY Connection Propertyccccocuu. 27
Creating and Configuring a Custom Socket...........cccccceevvvnee.. 27
Handling Internationalization and Localization................cccccuvvveennn. 31
jConnect Character-Set CONVEIErSccovvviviieeieeenniiiiieneenn 31
Working with Databasescoovviiiiiiiiiiieiiiee e 36
Implementing High Availability Failover Support............c........ 36
Performing Server-to-Server Remote Procedure Calls 41
Accessing Database Metadata............cocvvvvviieiiiiiiiiieiien s 42
Using Cursors with Result Sets.........cccccvvviiiiiiiiie i, 44
Support for Batch Updatesccccvvviiviieeiieiiiiiiiieeee e 54
Updating the Database from the Result Set
of @ Stored Procedurecccoooeiiiiiieieiiiee e 56
Working With Datatypes.........ccciviiiiiiiieeiiiiiiiie e csiiiee e 57
Implementing Advanced FEAtUreSccoovvivieiieeiiiiiiiieeee e e 62
Using Event NOtificationccccooecviiiiieei e 62
Handling Error MESSAQESuvvvieeiiiiiiiirieeeseeiiieee e e 65
Storing Java Objects as Column Data in a Table.................... 69

Dynamic Class LOAAINGceieeiiiiiiiiieee e e e e esiiieeeae e 74

JDBC 2.0 Optional Package Extensions Support.................... 77
Handling Restrictions, Limitations, and Deviations
from JDBC StandardsS..........ccuevvieeiiiiiiiiiiiiee e 88
Making Adjustments for Multithreading............cccooevuveeiienniinins 88
Using ResultSet.getCursorName()ooovvvveeeeeeeniiiiiieeeeeennnns 88
Using setLong() with Large Parameter Values....................... 89
Using COMPUTE Statementsccceevviiiiiieeeeenniiiieeee e 89
Executing Stored ProCedures........ccccceeviiiiiiieeiee i 89
CHAPTER 3 TroubleShOOtiNG . .uuuiieeiie e 93
Debugging wWith JCONNECT..........cocoiiiiiiiiiiee e 94
Obtaining an Instance of the Debug Classccccccvvvvvneenn. 94
Turning On Debugging in Your Applicationccccccceevvnnee.. 95
Turning Off Debugging in Your Applicationcccccccoevvvvne.. 95
Setting the CLASSPATH for Debugging..........cccoovvveeeeeiiiinnns 95
Using the Debug Methodsccccvviviiiiiiiiiiiec e 96
Capturing TDS COMMUNICALIONcvvieriiiiiiiiiiee e 98
PROTOCOL_CAPTURE Connection Property.........cccccceeeiiues 98
pause() and resume() Methods in the Capture Class............ 99
Unsuccessful Connection Errorscccvvevvieeiiiiiiieicieeiiieenn 100
Gateway Connection Refused..........cccccceevviiiiiieeiee i, 100
Unable to Connect to a 4.9.2 SQL Server.........ccccceeeeeeee... 100
Memory Usage in jConnect Applications..........ccccvvveeeiiiciineeneeenn. 102
Stored ProCcedure ErTOrS..... .o 103

RPC Returns Fewer Output Parameters Than Registered.... 103
Fetch/State Error When Stored Procedure

Returns Output Paramsoooeeiiiiiiiiiieeecccceeeee 103

Stored Procedure Executed in Unchained Transaction Mode 103

Custom Socket Implementation Error........ccccccovvvvviieeeeeniiiiiienenn. 105

CHAPTER 4 Performance and TUNINGoooooiiiiiiiiiieee e 107
Improving jConnect Performanceccccccovvvvviienieeniiiiiiiieee e 108

BigDecimal RESCAlING.......ccuviiiiiiiiiiiiiiieeeiiiicce e 108

REPEAT_READ Connection Property........ccccccceevviiiiveeeneeenn. 109

Character-Set CONVErSIONcccvviiiiiieeiieie e 109

Performance Tuning for Prepared Statements in Dynamic SQL.. 111
Choosing Between Prepared Statements

and Stored ProCedures..........cooceiveeeeiiieee e 112
Prepared Statements in Portable Applications....................... 112
Prepared Statements in Applications

with JConnect EXtENSIONS..........cvveeiiiiiiiiiiiiee e 113
Connection.prepareStatement()cccccveeeeiviiiieeeee e 114

Chapter

DYNAMIC_PREPARE Connection Propertyccccceeeeennn. 115
SybConnection.prepareStatement()cccccevveeeeeiiiiiieneeenn, 116
CUrsor PerformMancCeeoeiiiiiieiiiiie e 117
LANGUAGE_CURSOR Connection Propertycccccuveeee... 117
CHAPTER 5 Migrating jConnect Applicationsccccuvuiiiieiiiiiiiii s 119
Migrating jConnect ApPliCatioNScccuvvvviieeiiiiiiiiee e 120
Migrating Applications to jConnect 4.1ccccccevvviiiieeenennnn. 120
Migrating Applications to JCONNEct 5.X.......cccvvvveeiiiiiiiieeenennn. 120
Migrating Applications to jConnect 4.2 and 5.2 120
Sybase Extension Changesccccccviiiiiiiiiiiiiiiiiiicee e 123
Change EXampPleccoiiiviiiiiiieiiicee e 123
Changed Method NamMES..........ccovviiiiiiiie e 124
DEDUG ClaSsSuviiiiieei ittt 124
CHAPTER 6 WED SErver GatEWaY'S .. .uuuuiieeeeeeiiiieiiieieereeeee e s e s ssseenreneeeeeeeeeeesenas 125
About Web Server GateWaysccvvveeieeeiiiiiiiiieeeeeeiiiiiae e 126
TDS TUNNEIING ..o 126
jConnect and Gateway Configuration.............ccccceeevvivveeneennn. 127
Using the Cascade GateWayoocvvreriieeriiiiiiiieeeeeessniiieeeeens 131
Installing the Cascade Gatewayc.cccoevvvvvvveeeeiiiiiineeeennn 131
Starting the Cascade Gatewayccceeeevviviviieeeiiiiiiiieeeeenn 132
Testing the Cascade Gateway...........ccuvvveeeeeeiiiiiieeeees i 133
Reading the index.html File ..., 134
Running the Sample Isgl Applet ... 134
Defining a Connection to the Cascade Gateway................... 135
Using the TDS-Tunnelling Serviet........cccccceeeiiiiiiiieeec e, 136
TDS-tunnelling Servlet System Requirements 137
Installing the Servietccvveeeiiic e 137
INvoking the Serviet ... 138
Tracking Active TDS SESSIONSccoovvvviieeeeeiiiiiiieeeeeeeeiinnens 139
Resuming @ TDS SESSION.......ccciiiiiiiiiiieeeiciiiiieee e siiiraeee s 139
TDS Tunnelling and Netscape Enterprise Server 3.5.1
ON SOIAIIS ..t 140
APPENDIX A SQL Exception and Warning MeSSagesccccceeveeeeeeiniiiiinnnnns 141
APPENDIX B jConnect Sample Programsccceeeviiiiiiiiniiiiiiieieeeee e 159
RUNNING ISOIAPD et 160
Running jConnect Sample Programs and Code..............ccvvvveeen. 162
Sample APPlICAIONScvvviiiiiee i 162
SAMPIE COUL ...t 163

INDEX

Vi

About This Book

The Sybase jConnect for JDBC Programmer’s Refererdescribes the
jConnect for IDBC product and explains how to use it to access data
stored in relational database management systems.

Audience

Thismanual is for database-application programmers who are familiar
with the Java programming language, JDBC, and Transact-SQL®, the
Sybase version of Structured Query Language.

Related Documents
You may find the following documents helpful:
¢ The Sybase jConnect for JDBC Installation Guide
¢ The Sybase jConnect for JDBC Release Bulletin

¢ The javadoc documentation of jConnect extensions to JDBC. The
Java Development Kit (JDK) from JavaSoft contains a javadoc script
for extracting comments from source-code files. This script has been
used to extract documentation of jConnect packages, classes, and
methods from jConnect source files. When you install jConnect using
the full installation or javadocs option, the javadoc information is
placed in thgavadocs directory:

Installation_directory/docs/en/javadocs

Other Sources of Information

Use the Sybase Technical Library CD and the Technical Library Web site
to learn more about your product:

Vii

Other Sources of Information

The Technical Library CD contains product manuals and technical
documents and is included with your software. The DynaText browser
(included on the Technical Library CD) allows you to access technical
information about your product in an easy-to-use format.

Refer to theTechnical Library Installation Guide in your documentation
package for instructions on installing and starting Technical Library.

The Technical Library Web site includes the Product Manuals site, which
is an HTML version of the Technical Library CD that you can access using
a standard Web browser. In addition, you'll find links to the Technical
Documents Web site (formerly known as Tech Info Library), the Solved
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Web site, go to support.sybase.com, click
the Electronic Support Services tab, and select a link under the Technical
Library heading.

Sybase Certifications on the Web

Technical documentation at the Sybase Web site is updated frequently.

For the latest
information on product
certifications and/or
the EBF Rollups:

If you are a registered
SupportPlus user:

viii

1

Point your Web browser to Technical Documents at the following Web
site:

at techinfo.sybase.com
In the Browse section, click on the What’s Hot entry.

Explore your area of interest: Hot Docs covering various topics, or Hot
Links to Technical News, Certification Reports, Partner Certifications,
and so on.

Point your Web browser to Technical Documents at the following Web
site:

at techinfo.sybase.com
In the Browse section, click on the What’s Hot entry.
Click on the EBF Rollups entry.

You can research EBFs using Technical Documents, and you can
download EBFs using Electronic Software Distribution (ESD).

Follow the instructions associated with the Surﬁiostg'\" Online
Services entries.

About This Book

If you arednot a You can register by following the instructions on the Web.

reglstere

SupportPlus user, and To use SupportPlus, you need:

you want to become

one: A Web browser that supports the Secure Sockets Layer (SSL), such as

Netscape Navigator 1.2 or later
¢ An active support license
¢ A named technical support contact
e Your user ID and password
Whether or not you You may use Sybase’s Technical Documents. Certification Reports are among

are a registered the features documented at this site.
SupportPlus user:

1 Point your Web browser to Technical Documents at the following Web
site:

at techinfo.sybase.com
2 Inthe Browse section, click on the What’s Hot entry.

3 Click on the topic that interests you.

Conventions
This manual uses the following font and syntax conventions:

« Classes, interfaces, methods, and packages are showid irelvetica
within paragraph text. For example:

SybConnection class
SybEventHandler interface
setBinaryStream() method
com.sybase.jdbcx package

* Objects, instances, and parameter names are shown in italics. For
example:

“In the following examplectx is aDirContext object.”

“eventHdleris an instance of the SybEventHandler class that you
implement.”

“The classes parameter is a string that lists specific classes you want to
debug.”

If You Need Help

e Code fragments are shown in a monospace font. Variables in code
fragments (thatis, words that stand for values that you fill in) are italicized.

For example:

Connection con = DriverManager. get Connecti on("j dbc:
sybase: Tds: host . port", props);

If You Need Help

Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If

you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary

in your area.

CHAPTER 1 Introduction

This chapter introduces you to jConnect for JDBC, and describesits
concepts and components.

This chapter contains the following sections:

Name Page

What is JDBC? 2

What isjConnect? 4

What is JDBC?

What is JDBC?

JDBC (Java Database Connectivity) from the Java Software Division of Sun
MicroSystems, Inc. is a specification for an application program interface
(API) that allows Java applications to access multiple database management
systems using Structured Query Language (SQL). The JDBC driver manager
handles multiple drivers that connect to different databases.

A set of interfacesisincluded in the standard JDBC API so you can open
connections to databases, execute SQL commands, and process results. The
interfaces are described in Table 1-1.

Table 1-1: JDBC interfaces

Interface Description

java.sql.Driver L ocates the driver for a database URL
java.sgl.Connection Connection to a specific database
java.sgl.Statement Executes SQL statements
java.sql.PreparedStatement Handles parameterized SQL statements
java.sgl.CallableStatement Handles database stored procedure calls
java.sql.ResultSet Gets the results of SQL statements

java.sgl.DatabaseMetaData Used to access avariety of information about a
connection’'s DBMS and database

java.sql.ResultSetMetaData Used to access a variety of information
describing a ResultSet's attributes

Each relational database management system requires adriver to implement
these interfaces. All JDBC calls are sent to the JIDBC driver manager, which
passes the call to the specified driver.

There are four types of JDBC drivers:

e TypelJDBC-ODBC bridge— Translates JDBC calls into ODBC calls and
passes them to an ODBC driver. Some ODBC software must be resident
on the client machine. Some client database code may also reside on the
client machine.

* Type2native-API partly-Java driver — Converts JDBC calls into database-
specific calls. This driver, which communicates directly with the database
server, also requires some binary code on the client machine.

« Type 3 net-protocol all-Java driver — Communicates to a middle-tier
server using a DBMS-independent net protocol. A middle-tier gateway
then converts the request to a vendor-specific protocol.

CHAPTER 1 Introduction

« Type4 native-protocol all-Java driver — Converts JDBC calls to the
vendor-specific DBMS protocol, allowing client applications direct
communication with the database server.

What is jConnect?

What is jConnect?

jConnect is Sybase’s high-performance JDBC driver. jConnect is both a:
* Net-protocol/all-Java driver within a three-tier environment, and a
* Native-protocol/all-Java driver within a two-tier environment.

The protocol used by jConnect is TDS 5.0 (Tabular Data Stream™, version 5),
the native protocol for Adaptive Ser{feand Open Server™ applications.
jConnect implements the JDBC standard to provide optimal connectivity to the
complete family of Sybase products, allowing access to over 25 enterprise and
legacy systems, including:

e Adaptive Server Enterprise

e Adaptive Server Anywhere

« Adaptive Server 1Q (formerly Sybase IQ™)
* Replication Server®

¢ OmniConnect™

Note Since changing the name of Sybase SQL Server™ to Adaptive Server
Enterprise, Sybase may use the names Adaptive Server and Adaptive Server
Enterprise to refer collectively to all supported versions of Sybase SQL Server
and Adaptive Server Enterprise.

In addition, jConnect for JDBC can access Oracle, AS/400, and other data
sources using Sybase DirectConnect™.

In some instances, jConnect’s implementation of JDBC deviates from the
JDBC 1.x or 2.x specifications. For more information see “Handling
Restrictions, Limitations, and Deviations from JDBC Standards” on page 89.

CHAPTER 2

Programming Information

This chapter describes the basic components and programming
requirements that comprise jConnect for JDBC. It explains how to invoke
the jConnect driver, set connection properties, and connect to a database
server. It also contains information about using jConnect features.

Note For information about JDBC programming, go to:

at http://java.sun.com/jdbc.

To access the JDBC Guide: Getting Sarted manual for JDBC 1.0, go to:

at http://java.sun.com/products/jdk/1.1/docs/guide/jdbc.

To access the JDBC Guide: Getting Sarted manual for JDBC 2.0, go to:

at http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/.

The following topics are included in this chapter:

Name Page
Setting Up jConnect 6
Establishing a Connection 12
Implementing Custom Socket Plug-Ins 26
Handling Internationalization and Localization 31
Working with Databases 36
Implementing Advanced Features 62
Handling Restrictions, Limitations, and Deviations from JDBC | 89

Standards

Setting Up jConnect

Setting Up jConnect

This section describes the tasks you need to perform before you use jConnect.

Setting the jConnect Version

There are several versions of jConnect; use a version setting to determine:

The default value of the LANGUAGE connection property
The version-specific features that are available

The default character set, if no character set is specified through the
CHARSET connection property

The default value of the CHARSET_CONVERTER connection property

The default value of the CANCEL_ALL connection property, which is
used to set the behavior &tatement.cancel(), which by default cancels
the object on which it is invoked and any otBetement objects that
have begun to execute and are waiting for results

Table 2-1 lists the version settings available and their features.

Table 2-1: jConnect version settings and their features

Version
Constant Features Comments
VERSION_5 e The default value of the LANGUAGE For jConnect version 5.x, the default is
connection property is null. VERSION_5.
« Ifthe CHARSET connection For additional information, the comments for
property does not specify a VERSION_4.

character set, jConnect uses the
database’s default character set.The default
value for CHARSET_CONVERTER is the
PureConverter class.

* By default,Statement.cancel() cancels only
the Statement object it is invoked on.

» JDBC 2.0 methods can be used to store and
retrieve Java objects as column data.

CHAPTER 2 Programming Information

Version

Constant Features Comments

VERSION 4 * The default value of the LANGUAGE For jConnect version 4.x and earlier, the default
connection property is null. is VERSION_2.

« If the CHARSET connection property doesServer messages are localized according to the
not specify a character set, jConnect uses tlaguage setting in your local environment.
database’s default character set.The defadlhe languages supported are: Chinese, US
value for CHARSET_CONVERTER is the English, French, German, Japanese, Korean,
PureConverter class. Portuguese, and Spanish.

» By default,Statement.cancel() cancels only The default behavior dtatement.cancel() is
the Statement object it is invoked on. JDBC-compliant.

« JDBC 2.0 methods can be used to store aktbe CANCEL_ALL to set the behavior of
retrieve Java objects as column data. Statement.cancel(). See “CANCEL_ALL

Connection Property” on page 9.
For information on Java objects as column
data, see “Storing Java Objects as Column Data
in a Table” on page 69.

VERSION_3 ¢ The default value of the LANGUAGE The default is VERSION_2.

connection property is us_english. See the comments for VERSION_2.
If the CHARSET connection property does

not specify a character set, jConnect uses the

database’s default character set.

The default value for
CHARSET_CONVERTER is the
PureConverter class.

By default,Statement.cancel() cancels the
object it is invoked on and any other
Statement objects that have begun to
execute and are waiting for results.

Setting Up jConnect

Version
Constant Features Comments
VERSION_2 e The default value of the LANGUAGE The default version setting for jConnect

connection property is us_english. version 2.x is VERSION_2.

« Ifthe CHARSET connection property does
not specify a character set, the default
character setis iso_1.

Note VERSION 5 is the default version
setting for jConnect version 5.x.

* The default value for

CHARSET _CONVERTER is the The LANGUAGE connection property

TruncationConverter class, unless the determines the language in which messages

CHARSET connection property specifies 4'°™M jconnect and the server appear.
multibyte or 8-bit character set, in which For information on the CHARSET and
case the default CHARSET_CONVERTERCHARSET_CONVERTER connection
is thePureConverter class. classes, see “jConnect Character-Set

» By default,Statement.cancel() cancels the Converters” on page 31.
object it is invoked on and any other The VERSION_2 default behavior of
Statement objects that have begun to Statement.cancel() is not JDBC-compliant.
execute and are waiting for results. Use CANCEL_ALL to set the behavior of
Statement.cancel(). See “CANCEL_ALL
Connection Property” on page 9.

The version values are constant values from the SybDriver class. When
referring to the version constant, use this syntax:

com sybase. j dbcx. SybDri ver. VERSI ON_5

Use SybDriver.setVersion() to set the jConnect version. The following code
samples show how to load the jConnect driver and set the version.

For jConnect 4.x:

i nport com sybase. j dbcx. SybDri ver;
SybDriver sybDriver = (SybDriver)
Cl ass. forNane ("com sybase.jdbc. SybDriver").new nstance();
sybDri ver. set Ver si on
(com sybase. j dbcx. SybDri ver. VERSI ON _4) ;
Driver Manager.regi sterDriver(sybDriver);

For jConnect 5.x:

i nport com sybase. j dbcx. SybDri ver;
SybDriver sybDriver = (SybDriver)

Cl ass. f or Nane

("com sybase. j dbc2.j dbc. SybDriver").new nstance();
sybDri ver. set Ver si on

(com sybase. j dbcx. SybDri ver. VERSI ON_5) ;
Driver Manager.regi sterDriver(sybDriver);

CHAPTER 2 Programming Information

You can call setVersion() multiple timesto change the version setting. New
connectionsinherit the behavior associated with the version setting at thetime
the connection was made. Changing the version setting during a session does
not affect the current connection.

As described in the next section, you can use JCONNECT_VERSION to
override the SybDriver version setting and specify a different version setting
for a specific connection.

JCONNECT_VERSION Connection Property

Use JCONNECT_VERSION to specify the version setting for a specific
session.You can set JCONNECT_VERSION to an integer value of “2,” “3,”
“4,” or “5,” depending on the characteristics you want (see Table 2-1).

CANCEL_ALL Connection Property

CANCEL_ALL is a Boolean-valued connection property for specifying the
behavior of thestatement.cancel() method.

Note In jConnect version 4.0 and earlier, the default for CANCEL_ALL is
“true.” In jConnect version 4.1 and later, to comply with the JDBC
specification, if you set the connection property JCONNECT_VERSION to
“4” or above, the default setting for CANCEL_ALL is “false.”

The settings for CANCEL_ALL have the following effect on
Statement.cancel():

e« If CANCEL_ALL is “false,” invoking Statement.cancel() cancels only
the Statement object it is invoked on. Thus, stmtA is aStatement
object,stmtA.cancel() cancels the execution of the SQL statement
contained irstmtA in the database, but no other statements are affected.
stmtA is canceled whether it is in cache waiting to execute or has started
to execute and is waiting for results.

e« If CANCEL_ALL is “true,” invoking Statement.cancel() cancels not
only the object it is invoked on, but also any otagtement objects on
the same connection that have executed and are waiting for results.

The following example sets CANCEL_ALL to “false.” In the exampleyps
is aProperties object for specifying connection properties.

Setting Up jConnect

.6rops.put("CANCEL_ALL", "false");

Note To cancel the execution of all Statement objects on a connection,
regardless of whether or not they have begun execution on the server, use the
extension method SybConnection.cancel().

Invoking the jConnect Driver

To register and invoke the Sybase jConnect driver, use either of two suggested
methods:

Method 1 For jConnect 4.x:
Cl ass. for Nanme("com sybase. j dbc. SybDriver"). new nstance();

For jConnect 5.x:
Cl ass. for Nanme("com sybase. j dbc2. j dbc. SybDri ver"). newl nstance();

Method 2 Add the jConnect driver to thejdbc.drivers system property. At initialization,
the DriverManager class attempts to load the driverslisted in jdbc.drivers.
Thisisless efficient than the previous approach. You can list multiple drivers
in this property, separated with a colon (:). The following code samples show
how to add adriver to jdbc.drivers within a program:

For jConnect 4.x:
Properties sysProps = System getProperties();
String drivers = "com sybase.jdbc. SybDriver";
String ol dDrivers =
sysProps. get Property("jdbc.drivers");
if (oldDrivers !'= null)
drivers += ":" + ol dDrivers;
sysProps. put ("jdbc.drivers", drivers.toString());

For jConnect 5.x:

Properties sysProps = System getProperties();
String drivers = "com sybase.jdbc2.jdbc. SybDriver";
String oldDrivers =
sysProps. get Property("jdbc.drivers");
if (oldDrivers !'= null)

drivers += ":" + ol dDrivers;

10

CHAPTER 2 Programming Information

sysProps. put ("jdbc.drivers", drivers.toString());

Note System.getProperties() isnot allowed for Java applets. Use the
Class.forName() method, instead.

11

Establishing a Connection

Establishing a Connection

This section describes how to establish a connection to an Adaptive Server
Enterprise or Adaptive Server Anywhere database using jConnect.

Setting Connection Properties

Table 2-2 lists the connection properties for jConnect and indicates their
default values. You must set the connection properties before you make a
connection.

There are two ways to set the driver connection properties:
* Using theDriverManager.getConnection() method in your application

e When you define the URL

Note Driver connection properties set in the URL do not override any
corresponding connection properties set in the application using the
DriverManager.getConnection() method.

To obtain a current list of properties for any driver, use the
Driver.getDriverPropertyInfo(String url, Properties props), whichreturns an
array ofDriverPropertylInfo objects. The array lists:

e The driver properties
* The current settings on which the driver properties are based
e The URL androps passed in

Driver connection property names are not case-sensitive (jConnect uses the
String.equalsignoreCase(String) method to compare property hames).

Table 2-2: Connection properties

Property

Description Default Value

APPLICATIONNAME

A user-defined property. The server sidecanbe Null
programmed to interpret the value given to this

property.

CANCEL_ALL Determines the behavior of the Depends on version
Statement.cancel() method. See setting. (See “Setting
“CANCEL_ALL Connection Property” on pagethe jConnect Version”
9. on page 6.

12

CHAPTER 2 Programming Information

Property

Description Default Value

CHARSET

Specifies the character set for strings passed Null
through TDS. If you specify a CHARSET, it
must match a CHARSET listed in syscharsets.

If null, jConnect uses the server’s default
CHARSET.

CHARSET_CONVERTER_CLASS

Use this property to specify the character-se¥ersion dependent.
converter class you want jConnect to use.
jConnect uses the version setting from
SybDriver.setVersion() to determine the default
character-set converter class to use. See
“Selecting a Character-Set Converter” on page
31 for detalils.

CONNECTION_FAILOVER

For use with the Java Naming and Directory true
Interface (JNDI). See
“CONNECTION_FAILOVER Connection
Property” on page 22.

DYNAMIC_PREPARE

Determines whether dynamic SQL prepared false
statements are precompiled in the database. See
“DYNAMIC_PREPARE Connection Property”

on page 115.

EXPIRESTRING

A read-only property that contains the licenseNever
expiration date. Expiration is “never” except for
evaluation copies of jConnect.

HOSTNAME The name of the current host. None
HOSTPROC Identifies the application’s process on the hodtione
machine.

IGNORE_DONE_IN_PROC

When set to “true,” intermediate update resuftlse
(as in stored procedures) are not returned, only
the final resultset.

JCONNECT_VERSION

Use this property to set version-specific 5
characteristics. See “JCONNECT_VERSION
Connection Property” on page 9.

LANGUAGE

Set this property for error messages returned Version dependent. See
from the server and for jConnect messages. It“Setting the jConnect
must match a language syslanguages. Version” on page 6.

LANGUAGE_CURSOR

Set this property to true if you want jConnect false
use “language cursors” instead of “protocol
cursors.”

See “Cursor Performance” on page 117.

13

Establishing a Connection

Property Description Default Value

LITERAL_PARAMS This property isfor use only with Adaptive false
Server Anywhere, which requires you to send
prepared statement parametersasliterals. For all
other Sybase databases, this property can be set
to “false.”

When set to “true,” any parameters set by the
setXXX methods in th@reparedStatement
interface are inserted literally into the SQL
statement when it is executed.

If set to “false,” parameter markers are left in the
SQL statement and the parameter values are sent
to the server separately.

PACKETSIZE Network packet size. 512

PASSWORD Login password. None

Set automatically if using the
getConnection(String, String, String) method, or
explicitly if usinggetConnection(String, Props).

PROTOCOL_CAPTURE The PROTOCOL_CAPTURE connection Null
property is used to specify a file for capturing
TDS communication between an application and
an Adaptive Server.

PROXY Gateway address. For the HTTP protocol, theNone
URL is: http://host: port.

To use the HTTPS protocol that supports
encryption, the URL is
https:/host:port/serviet_alias.

REMOTEPWD Remote server passwords for access via servidpne
to-server remote procedure calls. See
“Performing Server-to-Server Remote
Procedure Calls” on page 41.

REPEAT_READ Determines whether the driver keeps copies ¢fue
columns and output parameters so that columns
can be read out of order or repeatedly. See
“REPEAT_READ Connection Property” on
page 109.

14

CHAPTER 2 Programming Information

Property

Description Default Value

REQUEST HA_SESSION

This property indicates whether the connecting false
client wantsto begin aHA Failover session with
aversion 12 or later Adaptive Server configured

for HA Failover.

Setting this property to “true” causes jConnect to
attempt a HA Failover login. If you do not set
this connection property, a HA Failover session
will not start, even if the server is configured for
HA Failover

You cannot reset the property once a connection
has been made.

If you want more flexibility for requesting HA
Failover sessions, code the client application to
set REQUEST_HA_SESSION at runtime.

SELECT_OPENS_CURSOR

If set to “true,” calls to false
Statement.executeQuery() will automatically
generate a cursor when the query contains a
“FOR UPDATE”" clause.

If you have previously called
Statement.setFetchSize() or
Statement.setCursorName() on the same
statement, a setting of “true” for
SELECT_OPENS_ CURSOR has no effect.

Note You may experience some performance
degradation when SELECT_OPENS_CURSOR
is set to “true.”

See “Using Cursors with Result Sets” on page 44
for more information on using cursors with
jConnect.

SERIALIZE_REQUESTS

If set to “true,” jConnect waits for responses false
from the server before sending additional
requests.

SERVICENAME

The name of a back-end database server thatNone
DirectConnect gateway serves. Also used to
indicate the database to which Adaptive Server
Anywhere wants to connect.

15

Establishing a Connection

Property Description Default Value

SESSION_ID When this property isset, jConnect assumesthat Null
an application is trying to resume
communication on an existing TDS session held
open by the TDS-tunnelling gateway. jConnect
skips the login negotiations and forwards all
requests from the application to the specified
session ID.

SESSION_TIMEOUT Use this property to specify the amount of time Null
(in seconds) that an http-tunnelled session
(created using the jConnect TDS-tunnelling
servlet) will remain alive whileidle. After the
specified time, the connection will be
automatically closed. For more information
about the TDS-tunnelling servlet, see page 136.

SQLINITSTRING Usethis property to define aset of commandsto Null
be passed to the back-end database server. These
must be SQL commands that can be executed
using the Statement.executeUpdate() method.

SYBSOCKET_FACTORY Usethis property to enablejConnect touseyour Null
custom socket implementation.

Set SYBSOCKET_FACTORY either to:

¢ The name of a class that implements
com.sybase.jdbcx.SybSocketFactory; or

¢ “DEFAULT,” which instantiates a new
java.net.Socket()

See “Implementing Custom Socket Plug-Ins” on

page 26.
STREAM_CACHE_SIZE Maximum size used to cache statement respdda# (unlimited cache
streams. size)

16

CHAPTER 2 Programming Information

Property

Description Default Value

USE_METADATA

When set to “true,” ®atabaseMetaData object true
will be created and initialized when you

establish a connection. ThatabaseMetaData

object is necessary to connect to a specified
database.

jConnect usePatabaseMetaData for some
features, including Distributed Transaction
Management Support (JTA/JTS) and Dynamic
Class Loading (DCL).

If you receive error 010SJ, which indicates that
your application requires metadata, install the
stored procedures for returning metadata that
come with jConnect (see “Installing Stored
Procedures” in Chapter 3 of theonnect for

JDBC Installation Guide).

USER

Login ID. None

Set automatically if using the
getConnection(String, String, String) method, or
explicitly if usinggetConnection(String, Props).

VERSIONSTRING

Read-only version information for the JDBC jConnect driver
driver. version

Thefollowing codeisan example of setting connection properties. The sample
programs provided with jConnect also contain examples of setting these
properties.

Properties props = new Properties();
props. put ("user", “userid");
props. put ("password", "user_password");
/*

* |f the programis an applet that wants to access
* a server that is not on the sanme host as the

* web server, then it uses a proxy gateway.

*/

props. put ("proxy", "local host: port");

/*

* Make sure you set connection properties before
* attenpting to nake a connection. You can al so
* set the properties in the URL.

*/

Connection con = DriverManager. get Connecti on

("j dbc: sybase: Tds: host: port", props);

17

Establishing a Connection

Connecting to Adaptive Server Enterprise

Example

In your Javaapplication, definea URL using the jConnect driver to connect to
an Adaptive Server. The basic format of the URL is:

j dbc: sybase: Tds: host: port
where:
jdbc:sybase — Identifies the driver.
Tds — The Sybase communication protocol for Adaptive Server.

host:port — The Adaptive Server host name and listening port. See
$SYBASE/interfaces (UNIX) or %SYBASEY\ini\sgl.ini (Windows) for the
entry that your database or Open Server application uses. Obthaositipert
from the “query” entry.

You can connect to a specific database using this format:

j dbc: sybase: Tds: host: port/dat abase

Note To connect to a specific database using Adaptive Server Anywhere 6.x
or DirectConnect, use the Connection properties connection property to
specify the database name instead of “/database.”

The following code creates a connection to an Adaptive Server on host
“myserver” listening on port 3697:

SysProps. put ("user", "userid");
SysProps. put ("password", " user_password");
String url = "jdbc:sybase: Tds: myserver: 3697";
Connection_con =
Dri ver Manager . get Connecti on(url, SysProps);

URL Connection Property Parameters

18

You can specify the values for the jConnect driver connection properties when
you define a URL.

Note Driver connection properties set in the URL do not override any
corresponding connection properties set in the application using the
DriverManager.getConnection() method.

To set a connection property in the URL, append the property name and its
value to the URL definition. Use this syntax:

CHAPTER 2 Programming Information

j dbc: sybase: Tds: host: port/ dat abase?
property nane=val ue

To set multiple connection properties, append each additional connection
property and value, preceded by “&.” For example:

j dbc: sybase: Tds: nmyserver: 1234/ mydat abase?
LI TERAL_PARAMS=t r ue&PACKETSI ZE=512&HOSTNAME=ny host

If the value for one of the connection properties contains “&,” precede the “&”
in the connection property value with a backslash (\). For example, if your host
name is “a&bhost,” use this syntax:

j dbc: sybase: Tds: nmyserver: 1234/ mydat abase?
LI TERAL_PARAMS=t r ue&PACKETSI ZE=512&HOSTNAME=
a\ &bhost

Do not use quotes for connection property values, even if they are strings. For
example, use:

HOSTNAME=ny host
not:

HOSTNAME=" nyhost "

Connecting to Adaptive Server Anywhere

To use jConnect with Adaptive Server Anywhere, you should upgrade to
Adaptive Server Anywhere version 6.x.

Connecting to Adaptive Server Anywhere 5.x.x

If you have to connect to Adaptive Server Anywhere version 5.x.x via
jConnect, you must run the Adaptive Server Anywhere Open Server Gateway
dbos50, which is distributed with Adaptive Server Anywhere.

Note The free download version of Adaptive Server Anywhere, available from
the Powersoft Web site, does not include this Open Server Gateway. Call
Powersoft at (800) 265-4555 to receive a CD that includes the Open Server
Gateway and the required Open Server DLLs. You will be charged only for
shipping and handling.

1 Install Open Server Gateway 5.5.x3 or later and the Open Server DLLs.
Use Open Server DLLs, version 11.1.

19

Establishing a Connection

2 Add an entry for the gateway to your %SYBASEY\ini\sgl.ini file (using,
for example, sqledit).

3 Sart the gateway by entering:
start dbos50 gateway-deno
where gateway-demo is the gateway name defined in step 2.

4 When the Open Server Gateway is running, you can define a connection
asfollows:

j dbc: sybase: Tds: host: port

host is the host name where the Adaptive Server Anywhere and Open
Server gateway is running, and port isthe port number defined in sgl.ini.

Note To support multiple Adaptive Server Anywhere databases, use sqledit to
add an entry with a different port for each database, then run the Open Server
Gateway for each database.

Connecting to a Server Using JNDI

20

InjConnect 4.0 and | ater, you can use the Java Naming and Directory Interface
(JNDI) to provide connection information, which offers:

e A centralized location where you can specify host names and ports for
connecting to a server. You do not need to hard code a specific host and
port number in an application.

e Acentralized location where you can specify connection properties and a
default database for all applications to use.

e The jConnect CONNECTION_FAILOVER property for handling
unsuccessful connection attempts. When CONNECTION_FAILOVER is
set to “true,” jConnect attempts to connect to a sequence of host/port
server addresses in the JNDI name space until one succeeds.

To use jConnect with INDI, you need to make sure that certain information is
available in any directory service that JNDI accesses and that required
information is set in thfavax.naming.Context class. This section covers the
following topics:

e Connection URL for Using JNDI

« Required Directory Service Information

CHAPTER 2 Programming Information

¢ CONNECTION_FAILOVER Connection Property

¢ Providing JNDI Context Information

Connection URL for Using JNDI

To specify that jConnect use JNDI to obtain connection information, place
“indi” as the URL's subprotocol after “sybase”:

j dbc: sybase: j ndi : protocol -i nfornation-for-use-wth-JNDI
Anything that follows “jndi” in the URL is handled through JNDI. For

example, to use JNDI with the Lightweight Directory Access Protocol
(LDAP), you might enter:

j dbc: sybase: jndi: | dap:// LDAP_host name: port_nunber/server nane=
Sybasell, o=MyCompany, c=US

This URL tells JNDI to obtain information from an LDAP server, gives the
host name and port number of the LDAP server to use, and provides the name
of a database server in an LDAP-specific form.

Required Directory Service Information

When you use JNDI with jConnect, JNDI needs to return the following
information for the target database server:

¢ A host nhame and port number to connect to
¢ The name of the database to use

* Any connection properties that individual applications are not allowed to
set on their own

This information needs to be stored according to a fixed format in any directory
service used for providing connection information. The required format
consists of a numerical object identifier (OID), which identifies the type of
information being provided (for example, the destination database), followed
by the formatted information. Table 2-3 shows the required formatting.

Table 2-3: Directory service information required for JNDI

Type of Object Identifier
Information (OID) Format Comments
Host and port 1.3.6.1.4.1.897.4.25 TCP#1#hostname You can specify multiple hosts and

portnumber ports as separate entries, which lets
you use CONNECTION_FAILOVER.

21

Establishing a Connection

Type of Object Identifier

Information (OID) Format Comments

Connection 1.3.6.1.4.1.897.4.2.10 Propl=value& Prop2= You can specify multiple connection
property value& Prop3=value& ... properties by using aseparate entry for

each property or by putting multiple
properties, separated by ampersands,
in asingle entry.
Database 1.3.6.1.4.1.897.4.2.11 databasename The name of the databaseto which you
want to connect. This property works
like the “/database” in the JDBC URL.
Connection 1.3.6.1.4.1.897.4.2.9 Tds Optional, but if you use a connection
protocol protocol, it must always be “Tds.”

Thefollowing example shows connection information entered for the database
server SYBASE11 under an LDAP directory service:

dn: server nane=SYBASE11, o=MyConpany, c=US
servernanme: SYBASEl1l

1.3.6.1.4.1.897.4.2.5: TCP#1#gi otto 1266
1.3.6.1.4.1.897.4.2.5: TCP#1#giotto 1337
1.3.6.1.4.1.897.4.2.5: TCP#1#st andbyl 4444
1.3.6.1.4.1.897. 4. 2. 10: REPEAT_READ=f al se&PACKETSI ZE=1024
1.3.6.1.4.1.897.4.2.10: CONNECTI ON_FAI LOVER=t r ue
1.3.6.1.4.1.897.4.2.11: pubs2

1.3.6.1.4.1.897.4.2.9: Tds

In this example, SYBASE11 can be accessed through either port 1266 or port

1337 on host “giottoand it can be accessed through port 4444 on host
“standbyl.” Two connection properties, REPEAT READ and PACKETSIZE,
are set within one entry. The CONNECTION_FAILOVER connection

property is set as a separate entry. Applications connecting to SYBASE11 are
initially connected with theubs2 database. You do not need to specify a
connection protocol, but if you do, you must enter the attributeds, “not

“TDS".

CONNECTION_FAILOVER Connection Property

CONNECTION_FAILOVER is a Boolean-valued connection property you
can use when jConnect uses JNDI to get connection information.

22

CHAPTER 2 Programming Information

If CONNECTION_FAILOVER is set to “true,” jConnect makes multiple
attempts to connect to a server. If one attempt to connect to a host and port
number associated with a server fails, jConnect uses JNDI to get the next host
and port number associated with the server and attempts to connect through
them. Connection attempts proceed sequentially through all the hosts and ports
associated with a server.

For example, suppose CONNECTION_FAILOVER is set to “true,” and a
database server is associated with the following hosts and port numbers, as in
the earlier LDAP example:

1.3.6.1.4.1.897.4.2.5: TCP#1#gi otto 1266
1.3.6.1.4.1.897.4.2.5: TCP#1#gi otto 1337
1.3.6.1.4.1.897.4. 2. 5: TCP#1#st andbyl 4444

To get a connection to the server, jConnect tries to connect to the host “giotto”
at port 1266. If this fails, jConnect tries port 1337 on “giotto.” If this fails,
jConnect tries to connect to host “standbyl” through port 4444.

The default for CONNECTION_FAILOVER is “true.”

If CONNECTION_FAILOVER is set to “false,” jConnect attempts to connect
to an initial host and port number. If the attempt fails, jConnect throws a SQL
exception and does not try again.

Providing JNDI Context Information

To use jConnect with JINDI, a developer should be familiar with the JNDI
specification from Sun Microsystems, available from the Web:

http://java.sun.com/products/jndi

In particular, the developer needs to make sure that required initialization
properties are set javax.naming.directory.DirContext when JNDI and
jConnect are used together. These properties can be set either at the system
level or at runtime.

Two key properties are:
e Context.INITIAL_CONTEXT_FACTORY

This property takes the fully qualified class name of the initial context
factory for JNDI to use. This determines the JNDI driver that is used with
the URL specified in the Context. PROVIDER_URL property.

¢ Context.PROVIDER_URL

23

Establishing a Connection

This property takes the URL of the directory service that the driver (for
example, the LDAP driver) isto access. The URL should be astring, such
as “Idap://ldaphost:427".

The following example shows how to set context properties at runtime and how
to get a connection using JNDI and LDAP. In the example, the
INITIAL_CONTEXT_FACTORY context property is set to invoke Sun
Microsystem'’s implementation of an LDAP service provider. The

PROVIDER_URL context property is set to the URL of an LDAP directory
service located on the host “Idap_serverl” at port 983.

Properties props = new Properties();

/* W& want to use LDAP, so I NI TI AL _CONTEXT FACTORY is set to the

* class name of an LDAP context factory. In this case,

* context factory is provided by Sun’s implementation of a

* driver for LDAP directory service.

*/

props.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory");

/* Now, we set PROVIDER_URL to the URL of the LDAP server that
* is to provide directory information for the connection.

*/

props.put(Context. PROVIDER_URL, "ldap://Idap_server1:983");

/* Set up additional context properties, as needed. */
props.put(“user", "xyz");
props.put("password", "123");

/* get the connection */

Connection con = DriverManager.getConnection
("jdbc:sybase:jndi:ldap://ldap_server1:983" +
"/servername=Sybasell,0=MyCompany,c=US",props);

t he

Note that the connection string passed to getConnection() contains
LDAP-specific information, which the devel oper must provide.

When JNDI properties are set at runtime, as in the preceding example,
jConnect passes them to INDI to be used ininitializing a server, asin the

following jConnect code:

javax.naming.directory.DirContext ctx =
new javax.naming.directory.|nitialDirContext(props);

jConnect then obtains the connection information it needs from JNDI by
invoking DirContext.getAtributes(), as in the following example, where ctx

isaDirContext object:

24

CHAPTER 2 Programming Information

javax.nam ng.directory. Attributes attrs =
ctx.getAttributes(ldap://1dap_server1l: 983/ servernane=
Sybasell, SYBASE SERVER ATTRI BUTES) ;

In the example, SYBASE_SERVER_ATTRIBUTES is an array of strings
defined within jConnect. The array values are the OIDs for the required
directory information listed in Table 2-3.

25

Implementing Custom Socket Plug-ins

Implementing Custom Socket Plug-Ins

* 0% X X X X X X X

~

*

This section discusses how to plug a custom socket implementation into an
application to customize the communication between a client and server.
javax.net.ssl.SSLSocket isan example of a socket that you could customize
to enable encryption.

com.sybase.jdbcx.SybSocketFactory isa Sybase extension interface that
contains the createSocket(String, int, Properties) method that returns a
java.net.Socket. In order for ajConnect version 4.1 or later driver to load a
custom socket, an application must:

e Implement this interface
e Define thecreateSocket(..) method

jConnect uses the new socket for its subsequent input/output operations.
Classes that implemes{/bSocketFactory create sockets and provide a
general framework for the addition of public socket-level functionality.

Returns a socket connected to a Server Socket on the naned host,
at the given port.

@ar am host the server host

@aram port the server port

@ar am props Properties passed in through the connection
@eturns Socket

@xception | CExcepti on, UnknownHost Excepti on

public java.net. Socket createSocket(String host, int port, Properties props)
throws | OException, UnknownHost Excepti on;

26

Passing in properties allows instanceSydfSocketFactory to use connection
properties to implement an intelligent socket.

CHAPTER 2 Programming Information

When you implement SybSocketFactory to produce a socket, the same
application code can use different kinds of sockets by passing the different
kinds of factories or pseudo-factoriesthat create socketsto the application. You
can customize factories with parameters used in socket construction. For
example, you could customize factories to return sockets with different
networking time-outs or security parameters already configured. The sockets
returned to the application can be subclasses of java.net.Socket to directly
expose new APIs for features such as compression, security, record marking,
statistics collection, or firewall tunnelling (javax.net.SocketFactory).

Note SybSocketFactory isintended to be an overly smplified
javax.net.SocketFactory, enabling applications to bridge from java.net.* to
javax.net.* if desired.

To use a custom socket with jConnect:

1 Provide aJava class that implements
com.sybase.jdbcx.SybSocketFactory. See “Creating and Configuring a
Custom Socket” on page 27.

2 Setthe SYBSOCKET_FACTORY connection property so that jConnect
can use your implementation to obtain a socket.

SYBSOCKET_FACTORY Connection Property

To use a custom socket with jConnect, set the SYBSOCKET_FACTORY
connection property to a string that is either:

e The name of a class that implements
com.sybase.jdbcx.SybSocketFactory

or
« DEFAULT, which instantiates a nejava.net.Socket()

See “Setting Connection Properties” on page 12 for instructions on how to set
SYBSOCKET_FACTORY.

Creating and Configuring a Custom Socket

Once jConnect obtains a custom socket, it uses the socket to connect to a server
Any configuration of the socket must be completed before jConnect obtains it.

27

Implementing Custom Socket Plug-ins

This section explains how to plug in an SSL socket implementation, such as
javax.net.ssl.SSLSocket, with jConnect.

Note Currently, no Sybase servers support SSL.

The following example shows how an implementation of SSL can create an
instance of SSLSocket, configureit, and then return it. In the example, the
MySSLSocketFactory class implements SybSocketFactory and extends
javax.net.ssl.SSLSocketFactory to implement SSL. It contains two
createSocket methods—one foBSLSocketFactory and one for
SybSocketFactory—that:

* Create an SSL socket

* InvokeSSLSocket.setEnableCipherSuites() to specify the cipher suites
available for encryption

« Return the socket to be used by jConnect

Example

public class MySSLSocket Factory extends SSLSocket Factory
i mpl ements SybSocket Fact ory
{
/**
* Create a socket, set the cipher suites it can use, return
* the socket.
Denmonstrates how cither suites could be hard-coded into the
i mpl emrent at i on.

See j avax. net. SSLSocket Fact or y#cr eat eSocket
/
publ i c Socket createSocket(String host, int port)
throws | OException, UnknownHost Exception

{
/1l Prepare an array containing the cipher suites that are to
/'l be enabl ed.
String enabl eThese[] =

*
*
*
*
*

{
"SSL_DH DSS EXPORT W TH DES40 CBC SHA',
"SSL_RSA EXPORT_W TH_RC2_CBC 40_MD5",
"SSL_DH RSA EXPORT_W TH_DES40_CBC_SHA"

}

Socket s =

28

CHAPTER 2 Programming Information

}

/**

*

*

*
*
*
*
*
*
*
*
*
*
*
*
*

SSLSocket Factory. get Defaul t (). creat eSocket (host, port);
((SSLSocket) s) . set Enabl edCi pher Sui t es(enabl eThese) ;
return s;

Return an SSLSocket .
Denponstrates how to set cipher suites based on connection
properties I|ike:
Properties _props = new Properties();
Set other url, password, etc. properties.
_props. put (("Cl PHER_SUI TES_1",
"SSL_DH DSS EXPORT_W TH_DES40_CBC_SHA") ;
_props. put ("Cl PHER_SUI TES 2",
"SSL_RSA EXPORT_W TH_RC2_CBC_40_MD5");
_props. put ("Cl PHER_SUl TES_3",
"SSL_DH RSA EXPORT_W TH_DES40_CBC _SHA") ;
_conn = _driver.getConnection(url, _props);

See com sybase. j dbcx. SybSocket Fact or y#cr eat eSocket

public Socket createSocket(String host, int port,

Properties props)
throws | OException, UnknownHost Exception

/'l check to see if cipher suites are set in the connection
/'l properites

Vect or ci pherSuites = new Vector();

String cipherSuiteVal = null;

int cipherlndex = 1;

do

i f((cipherSuiteVval = props.getProperty("Cl PHER_SU TES "

+ ci pherl ndex++)) == null)
{

i f(cipherlndex <= 2)

{
/1 No cipher suites avail able
/1 return what the object considers its default
/1 SSLSocket, with cipher suites enabl ed.
return createSocket (host, port);

}

el se

{

/1 we have at |east one cipher suite to enable
/1 per request on the connection
br eak;

29

Implementing Custom Socket Plug-ins

30

}

}
el se
}
/1 add to the cipher suit Vector, so that
/1 we may enabl e them together
ci pher Sui t es. addEl enent (ci pher SuiteVal) ;
}
}
whi |l e(true);

/1 lets you create a String[] out of the created vector
String enabl eThese[] = new String[cipherSuites.size()];
ci pher Sui t es. copyl nt o(enabl eThese) ;
/'l enabl e the cipher suites
Socket s =
SSLSocket Fact ory. get Defaul t (). cr eat eSocket

(host, port);
((SSLSocket) s) . set Enabl edGi pher Sui t es(enabl eThese) ;
/'l return the SSLSocket
return s;

/] other nethods

Since jConnect requires no information about the kind of socket it is, you must
complete any configuration before you return a socket.

For additional information, see:

e Encrypt.java— Located in theample (jConnect 4.x) andample2
(jConnect 5.x) subdirectories of your jConnect directory, this sample
shows you how to use tl8ybSocketFactory interface with jConnect
applications.

e MySS_SocketFactory.java— Also located in theample (jConnect 4.x) and
sample2 (jConnect 5.x) subdirectori@s$ your jConnect directory, this is a
sample implementation of ti8ybSocketFactory interface that you can
plug-in to your application and use.

CHAPTER 2 Programming Information

Handling Internationalization and Localization

This section discusses internationalization and localization issues rel evant to
jConnect.

jConnect Character-Set Converters

jConnect uses specia classes for all character-set conversions. By selecting a
character-set converter class, you specify how jConnect should handle
single-byte and multibyte character-set conversions, and the performance
impact the conversions will have on your applications.

There are two character-set conversion classes. The conversion class that
jConnect usesisbased on the version setting (for example, VERSION_4), and
the CHARSET and CHARSET _CONVERTER_CLASS connection
properties.

TheTruncationConverter class works only with single-byte character

sets that use ASCII characters such as iso_1 and cp850. It does not work
with multibyte character sets or single-byte character sets that use non-
ASCII characters.

Using theTruncationConverter class, jConnect 5.x handles character sets
in the same manner as jConnect version 2.2 TfinecationConverter
class is the default converter when the version setting is VERSION_2.

ThePureConverter class is a pure Java, multibyte character-set converter.
jConnect uses this class if the version setting is VERSION_4 or higher.
jConnect also uses this converter with VERSION_ 2 if it detects a
character set specified in the CHARSET connection property that is not
compatible with th&runcationConverter class.

Although it enables multibyte character set conversions, the
PureConverter class may negatively impact jConnect driver
performance. If driver performance is a concern, see “Improving
Character Set Conversion Performance” on page 33.

Selecting a Character-Set Converter

jConnect uses the version setting freépbDriver.setVersion() to determine

the default character-set converter class to use. For VERSION_ 2, the default is
TruncationConverter. For VERSION_4 and later, the default is

PureConverter.

31

Handling Internationalization and Localization

You can also set the CHARSET _CONVERTER_CLASS connection property
to specify which character-set converter you want jConnect to use. Thisis
useful if you want to use a character-set converter other than the default for
your jConnect version.

For example, if you set jConnect to VERSION_4 or higher, but want to use the
TruncationConverter class rather than the multibyte PureConverter class,
you can set CHARSET_CONVERTER_CLASS:

For jConnect 4.1:
pr ops. put (" CHARSET_CONVERTER_CLASS",
"com sybase. utils. Truncati onConverter")
For jConnect 5.x:

props. put (" CHARSET_CONVERTER_CLASS",
"com sybase.jdbc2.utils. Truncati onConverter")

Setting the CHARSET Connection Property

32

You can specify the character set to use in your application by setting the
CHARSET driver property. If you do not set the CHARSET property:

e For VERSION_2, jConnect uses iso_1 as the default character set.

e For VERSION_3, VERSION_4, and VERSION_5, jConnect uses the
database’s default character set, and adjusts automatically to perform any
necessary conversions on the client side.

You can also use thé charset command line option for theglApp
application to specify a character set.

To determine which character sets are installed on your Adaptive Server, issue
the following SQL query on your server:

sel ect nane from syscharsets
go

For thePureConverter class, if the designated CHARSET does not work with
the client’s Java Virtual Machine (VM), the connection fails with a
SQLException, indicating that you must set CHARSET to a character set that
is supported by both Adaptive Server and the client.

When theTruncationConverter class is used, character truncation is applied
regardless of whether the designated CHARSET is 7-bit ASCII or not.

CHAPTER 2 Programming Information

Improving Character Set Conversion Performance

If you use multibyte character sets and need to improve driver performance,
you can use the SunloConverter class provided with the jConnect samples.
See “Character-Set Conversion” on page 109 for details.

Supported Character Sets

Table 2-4 lists the Sybase character sets that are supported by this release of
jConnect. The table also lists the corresponding JDK byte converter for each
supported character set.

Although jConnect supports UCS-2, currently no Sybase databases or open
servers support UCS-2.

The Sybasgjischaracter set does not include the IBM or Microsoft extensions
to JIS, whereas the JDK SJIS byte converter includes these extensions. As a
result, conversions from Java strings to a Sybase databassjissimay result

in character values that are not supported by the Sybase database. However,
conversions frongjison a Sybase database to Java strings should not have this
problem.

Table 2-4 lists the character sets currently supported by Sybase.

Table 2-4: Supported Sybase character sets

SybCharset Name JDK Byte Converter
ascii_7 8859 1
bigs Bigh
cp037 Cp037
cp437 Cp437
cp500 Cp500
cp850 Cp850
cp852 Cp852
cp855 Cp855
cp857 Cp857
cp860 Cp8s60
cp863 Cp863
cp864 Cp864
cp866 Cp866
cp869 Cp869
cp874 Cp874
cp932 Cp932

33

Handling Internationalization and Localization

34

SybCharset Name

JDK Byte Converter

cp936 Cpo36
cp950 Cp950
cpl250 Cpl1250
cpl251 Cpl251
cpl252 Cpl252
cpl253 Cpl1253
cpl254 Cpl254
cpl255 Cpl255
cpl256 Cpl256
cpl257 Cpl257
cpl258 Cpl258
deckanji EUCJIS
eucgb GB2312
eucjis EUCJIS
eucksc Cp949
ibm420 Cp420
ibm918 Cp918
iso_1 8859_1
15088592 8859-2
15088595 8859 5
15088596 8859_6
15088597 8859_7
15088598 8859 _8
15088599 8859 9
150885915 8859_15
koi8 KOI8 R
mac Macroman
mac_cyr MacCyrillic
mac_ee MacCentral Europe
macgreek MacGreek
macturk MacTurkish
gis (see note) SIS
tis620 MS874
utf8 UTF8

CHAPTER 2 Programming Information

European Currency Symbol Support

jConnect version 4.1 and later support the use of the new European currency
symbol, or ‘euro” and its conversion to and from UCS-2 Unicode.

Theeuro has been added to the following Sybase character sets: cp1250,
cpl251, cpl252, cpl253, cpl254, cpl255, cpl256, cpl257, cpl258, cp874,
50885915, and utf8.

Character sets cp1257, cp1258, and iso885915 are new.
To use thesuro symbol:

e Use thePureConverter class, a pure Java, multibyte character-set
converter. See “jConnect Character-Set Converters” on page 31 for more
information.

« Verify that the new character sets are installed on the server.

Theeuro symbol is currently supported only on Adaptive Server
Enterprise version 11.9.2 and later; Adaptive Server Anywhere does not
support thesuro symbol.

« Select the appropriate character set on the client. See “Setting the
CHARSET Connection Property” on page 32 for more information.

e Upgrade to JDK 1.1.7 or the Java™ 2 Platform.

Unsupported Character Sets

The following Sybase character sets are not supported in jConnect 5.x because
no JDK byte converters are analogous to the Sybase character sets:

e Ccpl047
e euccns
e greek8
e roman8
e turkish8

You can use these character sets withrthecationConverter class as long
as the application uses only the 7-bit ASCII subsets of these characters.

35

Working with Databases

Working with Databases

This section discusses database issues relevant to jConnect and includes these
topics:

* Implementing High Availability Failover Support

« Performing Server-to-Server Remote Procedure Calls

» Accessing Database Metadata

e Using Cursors with Result Sets

e Support for Batch Updates

« Updating the Database from the Result Set of a Stored Procedure

* Working with Datatypes

Implementing High Availability Failover Support

jConnect versions 4.2 and 5.2 support the Sybase Failover feature available in
Adaptive Server Enterprise version 12.0.

Note Sybase Failover in a high availability system is a different feature than
“connection failover.” Sybase strongly recommends that you read this section
very carefully if you want to use both.

Overview

Sybase Failover allows you to configure two version 12.0 Adaptive Servers as
companions. If the primary companion fails, that server’s devices, databases,
and connections can be taken over by the secondary companion.

You can configure a high availability system either asymmetrically or
symmetrically.

An asymmetric configuration includes two Adaptive Servers, each physically
located on a different machine, that are connected so that if one of the servers
is brought down, the other assumes its workload. The secondary Adaptive
Server acts as a “hot standby” and does not perform any work until failover
occurs.

36

CHAPTER 2 Programming Information

A symmetric configuration also includes two Adaptive Servers running on
separate machines. However, if failover occurs, either Adaptive Server can act
asaprimary or secondary companion for the other Adaptive Server. In this
configuration, each Adaptive Server is fully functional with its own system
devices, system databases, user databases, and user logins.

In either setup, the two machines are configured for dual access, which makes
the disks visible and accessible to both machines.

You can enable Sybase Failover in jConnect and connect aclient application to
an Adaptive Server configured for failover. If the primary server fails over to
the secondary server, the client application also automatically switchesto the
second server and reestablishes network connections.

Note Refer to Using Sybase Failover in A High Availability System for more
detailed information about Sybase Failover.

Requirements, Dependencies, and Restrictions
¢ You must have two version 12.0 Adaptive Servers configured for Failover.

e You must use jConnect 4.2 or jConnect 5.2. Previous driver versions do
not support this feature.

¢ Only changes that were committed to the database before failover are
retained when the client fails over.

« The client application connection must be made using JNDI. See
“Connecting to a Server Using JNDI” on page 20.

« jConnect event notification does not work when failover occurs. See
“Using Event Notification” on page 62.

¢ Close all statements when they are no longer used. jConnect stores
information on statements to enable failover. If you do not close
statements, you will experience memory leaks.

Implementing Failover in jConnect

To implement failover support in jConnect:

1 Configure the primary and secondary Adaptive Servers for failover.

37

Working with Databases

38

2 Include an entry for the primary server and a separate entry for the
secondary server in the directory service information file required by
JNDI. The primary server entry will have an attribute (the HA OID) that
refersto the entry for the secondary server.

Using LDAP asthe service provider for INDI, there are three possible
formsthat this HA attribute can have:

« Reative Distinguished Name (RDN) — This form assumes that the
search base (typically provided by faea.naming.provider.url
attribute) combined with this attribute’s value is enough to identify
the secondary server. For example, assume the primary server is at
hostname:4200 and the secondary server is at hostname:4202:

dn: servernane=haprimary, o0=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#host nanme 4200
1.3.6.1.4.1.897.4.2.15: servernane=hasecondary
obj ectcl ass: sybaseServer

dn: servernanme=hasecondary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#host nanme 4202
obj ectcl ass: sybaseServer

» Distinguished Name (DN) — This form assumes that the HA attribute’s
value uniquely identifies the secondary server, and may or may not

duplicate values found in the search base. For example:
n: servernanme=hapri mary, o=Sybase, c¢=US
1.4.1.897.4.2.5: TCP#1#host nane 4200
1.4.1.897.4.2.15: servernane=hasecondary,
o=Sybase, c=US ou=Accounti ng
obj ectcl ass: sybaseServer

=1

. S
.3.6
.3.6

dn: servernane=hasecondary, o=Sybase, c¢=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#1#host name 4202
obj ectcl ass: sybaseServer

Notice thathasecondary is located in a different branch of the tree
(see the additionalu=Accounting qualifier).

e Full LDAP URL - This form assumes nothing about the search base.
The HA attribute is expected to be a fully-qualified LDAP URL that
is used to identify the secondary (it may even point to a different
LDAP server). For example:

CHAPTER 2 Programming Information

dn: s
1.3.6
1.3.6

erver nane=haf ai | over, o0=Sybase, c=US
1.4.1.897.4.2.5: TCP#l#host name 4200
1.4.1.897.4.2.15: |dap://|dapserver: 386/ servernane=secondary,

o=Sybase, c¢=US ou=Accounti ng

obj ect cl ass:

sybaseSer ver

dn: servernane=secondary, o0=Sybase, c¢=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#1#host name 4202

obj ect cl ass:
3

]

@

ver

PRPPPRPRPRPQ

rve
1.4
1.4
1.4.
1. 4.
1.4
1.4
1.4

SRR R R R X

. 897.
. 897.
. 897.

sybaseServer

In the directory service information file required by JNDI, set the
REQUEST_HA_SESSION connection property to enable afailover
session every time you make a connection.

The new REQUEST_HA_SESSION connection property is used to

indicate that the connecting client wants to begin afailover session with

the version 12.0 Adaptive Server configured for failover. Setting this

property to “true” causes jConnect to attempt a failover login. If you do
not set this connection property, a failover session will not start, even if the
server is configured correctly. The default value for
REQUEST_HA_SESSION is “false.”

Set the connection property like any other connection property. You
cannot reset the property once a connection has been made.

If you want more flexibility for requesting failover sessions, code the
client application to set REQUEST_HA_SESSION at runtime.

The following example shows connection information entered for the
database server SYBASE11 under an LDAP directory service:

nanme=SYBASEL11, o=MyConpany, c=US
1. 897.
1. 897.
1. 897.
1. 897.
1
1
1

4.2.5: TCP#1#t ahiti 3456

. 10: REPEAT_READ=f al se&PACKETSI ZE=1024
. 10: CONNECTI ON_FAI LOVER=f al se

. 11: pubs2

. 9: Tds

. 15: ser ver nane=SECONDARY

. 10: REQUEST_HA SESSI ON=t r ue

PhAMADL
NN NN

dn: ser ver name=SECONDARY, o=M/Conpany, c=US

1.3.6.1.4.1.897.

4

4. 2.5: TCP#1#noorea 6000

where “tahiti” is the primary server and “moorea” is the secondary
companion server.

Request a connection using JNDI and LDAP.

39

Working with Databases

e jConnect uses the LDAP server’s directory server to determine the
name and location of the primary and secondary servers:

/* get the connection */

Connection con = DriverManager. get Connecti on
("jdbc: sybase:jndi:|dap://|dap_server1l: 983" +
"/ servernane=Sybasell, o=MyConpany, c=US", props) ;

or
e Specify a searchbase:

props. put (Cont ext . PROVI DER_URL,
"l dap:/ /1 dap_server1: 983/ o=MyConpany, c=US");

Connecti on con=Dri ver Manager . get Connecti on
("] dbc: sybase: j ndi : server nane=Sybasell", props);

Logging In to the Primary Server

If an Adaptive Server is not configured for failover, or for some reason cannot
grant a failover session, the client cannot log in, and the following warning
displays:

" The server denied your request to use the high-
avai lability feature.

Pl ease reconfigure your database, or do not request a
hi gh-availability session.’

Failing Over to the Secondary Server

When failover occurs, an exception is thrown and the client automatically
reconnects to the secondary database using JNDI.

Note that:

e The identity of the database to which the client was connected and any
committed transactions are retained.

- Partially read result sets, cursors, and stored procedure invocations are
lost.

e When failover occurs, your application may need to restart a procedure or
go back to the last completed transaction or activity.

40

CHAPTER 2 Programming Information

Failing Back to the Primary Server

At some point, theclient will fail back from the secondary server to the primary

server. When failback occursis determined by the System Administrator who

issues sp_failback on the secondary server. Afterward, the client can expect

the same behavior and results on the primary server as documented in “Failing
Over to the Secondary Server” on page 40

Performing Server-to-Server Remote Procedure Calls

A Transact-SQL language command or stored procedure running on one server
can execute a stored procedure located on another server. The server to which
an application has connected logs in to the remote server, and executes a
server-to-server remote procedure call.

An application can specify a “universal” password for server-to-server
communication; that is, a password used in all server-to-server connections.
Once the connection is open, the server uses this password to log in to any
remote server.

By default, jConnect uses the current connection’s password as the default
password for server-to-server communications.

However, if the passwords are different on two servers for the same user and
that user is performing server-to-server remote procedure calls, the application
must explicitly define passwords for each server it plans to use.

jConnect version 4.1 and later include a property that lets you set a universal
“remote” password or different passwords on several servers. jConnect lets you
set and configure the property using ¢eeRemotePassword() method in the
SybDriver class:

Properties connectionProps = new Properties();

public final void setRenotePassword(String serverNane,
String password, Properties connectionProps)

To use this method, the application needs to imporsyb®river class, then
call the method.

For jConnect 4.x:

i mport com sybase. j dbcx. SybDri ver;
SybDriver sybDriver = (SybDriver)

Cl ass. for Name(" com sybase. j dbc. SybDri ver"). new nstance();
sybDri ver. set Renot ePasswor d

(server Nane, password, connecti onProps);

41

Working with Databases

For jConnect 5.x:

i nport com sybase. j dbcx. SybDri ver;
SybDriver sybDriver = (SybDriver)

Cl ass. for Name(" com sybase. j dbc2. j dbc. SybDri ver"). newl nstance();
sybDri ver. set Renot ePasswor d

(server Nane, password, connectionProps);

Note To set different remote passwords for various servers, repeat the
preceding call (appropriate for your version of jConnect) for each server.

This call adds the given server name-password pair to the given Properties
object, which can be passed by the application to DriverManager in
DriverManager.getConnection (server _url, props).

If serverName is NULL, the universal password will be set to password for
subsequent connections to all servers except the ones specifically defined by
previous callsto setRemotePassword().

When an application setsthe REMOTEPWD property, jConnect no longer sets
the default universal password.

Accessing Database Metadata

To support JDBC DatabaseMetaData methods, Sybase providesaset of stored
procedures that jConnect can call for metadata about a database. These stored
procedures must be installed on the server for the JDBC metadata methods to
work.

If the stored procedures for providing metadata are not already installed in a
Sybase server, you can install them using stored procedure scripts provided
with jConnect:

e ggl_server.sgl installs stored procedures on pre-version 12.0 Adaptive
Server databases.

e ggl_server12.sgl installs stored procedures on an Adaptive Server version
12.0 database.

42

CHAPTER 2 Programming Information

¢ sgl_anywhere.sgl installs stored procedures on an Adaptive Server
Anywhere database.

Note The most recent version of these scripts is compatible with all versions
of jConnect.

See theSybase jConnect for JDBC Installation Guide and Release Bulletin for
complete instructions on installing stored procedures.

In addition, to use the metadata methods, you must set the USE_ METADATA
connection property to “true” (its default value) when you establish a
connection.

You cannot get metadata about temporary tables in a database.

Note TheDatabaseMetaData.getPrimaryKeys() method finds primary keys
declared in a table definition (CREATE TABLE) or with alter table (ALTER
TABLE ADD CONSTRAINT). It does not find keys defined using
sp_primarykey.

Server-Side Metadata Installation

Metadata support can be implemented in either the client (ODBC, JDBC) orin
the data source (server stored procedures). jConnect provides metadata suppor
on the server, which results in the following benefits:

¢ Maintains jConnect’s small size, which ensures the driver can be quickly
downloaded from the Internet.

e Gains runtime efficiency from preloaded stored procedures on the data
source.

« Provides flexibility—jConnect can connect to a variety of databases.

43

Working with Databases

Using Cursors with Result Sets

jConnect 5.x implements many JDBC 2.0 cursor and update methods. These
methods make it easier to use cursors and to update rowsin atable based on
valuesin aresult set.

Note To have full JIDBC 2.0 support, use jConnect version 5.x or later.
jConnect version 4.x provides some JDBC 2.0 features via Sybase extensions
and the ScrollableResultSet.java sample found in the sample subdirectory
under your jConnect directory. See the com.sybase.jdbcx and the sample
packages for the javadocs on these methods.

InJDBC 2.0, ResultSets are characterized by their typeand their concurrency.
The type and concurrency values are part of the java.sql.ResultSet interface
and are described in its javadocs.

Table 2-5 identifiesthe characteristics of java.sql.ResultSet that are available

in jConnect 5.x.
Table 2-5: java.sql.ResultSet options available in jConnect 5.x
Type
TYPE_FORWARD_ TYPE_SCROLL_ TYPE_SCROLL_
Concurrency ONLY INSENSITIVE SENSITIVE
CONCUR_READ_ONLY Supported in 5.x Supported in 5.x Not availablein 5.x
CONCUR_UPDATABLE Supported in 5.x Not availablein 5.x Not availablein 5.x

This section includes the following topics:

e Creating a Cursor

« Positioned Updates and Deletes Using JDBC 1.x Methods
* Using a Cursor with a PreparedStatement

e Support for SCROLL_INSENSITIVE Result Sets in jConnect

Creating a Cursor

To create a cursor using jConnect 4.x, use either
SybStatement.setCursorName() or SybStatement.setFetchSize(). When
you useSybStatement.setCursorName(), you explicitly assign the cursor a
name. The signature f8ybStatement.setCursorName() is:

void setCursorName(String name) throws SQLException;

44

CHAPTER 2 Programming Information

You use SybStatement.setFetchSize() to create a cursor and specify the
number of rows returned from the database in each fetch. The signature for
SybStatement.setFetchSize() is:

void setFetchSize(int rows) throws SQLException;

When you use setFetchSize() to create a cursor, thejConnect driver namesthe
cursor. To get the cursor’'s name, BsultSet.getCursorName().

You create cursors in jConnect version 5.x the same way as in version 4.x, but
because version 5.x supports JDBC 2.0, there is another way to create cursors
You can specify which kind dtesultSet you want returned by the statement,
using the following JDBC 2.0 method on the connection:

St at ement createStatenent (int resultSetType, int
resul t Set Concurrency)throws SQ Exception

The type and concurrency correspond to the types and concurrences found on
theResultSet interface listed in Table 2-5. If you request an unsupported
ResultSet, a SQL warning is chained to the connection. When the returned
Statement is executed, you will receive the kindrdsultSet that is most like

the one you requested. See the JDBC 2.0 specification for more details on this
method’s behavior.

If you do not usereateStatement(), or you are using jConnect version 4.x,
the default types dkesultSet are:

¢ If you call onlyStatement.executeQuery(), then theResultSet returned
is aSybResultSet that is TYPE_FORWARD_ONLY and
CONCUR_READ_ONLY.

¢ If you call setFetchSize() or setCursorName(), then theResultSet
returned fronexecuteQuery() is aSybCursorResultSet that is
TYPE_FORWARD_ONLY and CONCUR_UPDATABLE.

To verify that the kind oResultSet object is what you intended, the JDBC 2.0
API for ResultSet has added two methods:

int getConcurrency() throws SQ.Exception;
int getType() throws SQ.Excepti on;

The basic steps for creating and using a cursor are:

1 Create the cursor usirBjatement.setCursorName() or
SybStatement.setFetchSize().

2 InvokeStatement.executeQuery() to open the cursor for a statement and
return a cursor result set.

45

Working with Databases

46

Invoke ResultSet.next() to fetch rowsand position the cursor in the result

Set.

The following example uses each of the two methods for creating cursors
and returning aresult set. It also uses ResultSet.getCursorName() to get
the name of the cursor created by SybStatement.setFetchSize().

/1 Wth conn as a Connection object, create a

/1 Statenent object and assign it a cursor using
/1 Statenent.setCursorNane().

Statenment stmt = conn.createStatenment();

stnt. set Cur sor Nane("aut hor _cursor");

/'l Use the statenent to execute a query and return
/'l a cursor result set.
ResultSet rs = stnt.executeQuery("SELECT au_id,
au_| nane, au_fnanme FROM aut hors
WHERE city = ' Cakland ");
while(rs.next())

{

/1 Create a second statenent object and use

/1 SybStatenment.setFetchSize()to create a cursor
/1 that returns 10 rows at a tine.

SybSt at ement syb_stnmt = conn.createStatenent();
syb_stnt.setFetchSi ze(10);

/1 Use the syb_stnt to execute a query and return

/1 a cursor result set.

SybCur sorResul t Set rs2 =
(SybCur sor Resul t Set) syb_stnt. execut eQuery
("SELECT au_i d, au_l nane, au_fnane FROM aut hors
WHERE city = "Pinole ");

whil e(rs2. next())

{

/1 Get the name of the cursor created through the
/'l setFetchSize() method.
String cursor_nane = rs2.getCursorNanme();

/1 For jConnect 5.x, create a third statenent
/'l object using the new nethod on Connecti on,
/1 and obtain a SCROLL_I NSENSI TI VE Resul t Set .

CHAPTER 2 Programming Information

/1 Note: you no |onger have to downcast the
/1 Statenent or the Result Set.
Statenment stmt = conn. createStatenment (

Resul t Set . TYPE_SCROLL_I NSENSI TI VE,
Resul t Set . CONCUR_READ _ONLY) ;

Resul t Set rs3 = stnt.executeQuery

("SELECT ... [whatever]");
/1 Execute any of the JDBC 2.0 nethods that
/1 are valid for read only ResultSets.
rs3.next();
rs3. previous();
rs3.relative(3);
rs3.afterlLast();

Positioned Updates and Deletes Using JDBC 1.x Methods

The following example shows how to use methodsin JDBC 1.x to do a
positioned update. The example creates two Statement objects, one for
selecting rows into a cursor result set, and the other for updating the database
from rows in the result set.
/1 Create two statenent objects and create a cursor
/1 for the result set returned by the first
/1 statenent, stntl. Use stntl to execute a query
/1 and return a cursor result set.
Statenent stmtl = conn.createStatenment();
Statenent stnmt2 = conn.createStatenment();
stnt 1. set Cur sor Name(" aut hor _cursor");
ResultSet rs = stnt 1. executeQuery("SELECT
au_i d, au_Il nane, au_fnane
FROM aut hors WHERE city = ' Oakl and’
FOR UPDATE OF au_l name");

/1l Get the nanme of the cursor created for stm1l so
/! that it can be used with stnt2.
String cursor = rs.getCursorNane();

/1l Use stnmt2 to update the database fromthe
/1 result set returned by stntl.
String last_nane = new String("Snmth");
whil e(rs.next())
{
if (rs.getString(1l).equal s("274-80-9391"))
{

47

Working with Databases

st nt 2. execut eUpdat e(" UPDATE aut hors "+
"SET au_l nane = "+l ast_nane +
"WHERE CURRENT OF " + cursor);

Deletions in a Result Set

Thefollowing example uses Statement object stmt2, from the preceding code,
to perform a positioned deletion:
stnt 2. execut eUpdat e(" DELETE FROM aut hor s
WHERE CURRENT COF " + cursor);

Positioned Updates and Deletes Using JDBC 2.0 Methods

This section discusses JDBC 2.0 methods for updating columns in the current
cursor row and updating the database from the current cursor row in aresult
set. They are followed by an example.

Updating Columns in a Result Set

JDBC 2.0 specifies a number of methods for updating column values from a
result set in memory, on the client. The updated values can then be used to
perform an update, insert, or delete operation on the underlying database. All
of these methods are implemented in the SybCursorResultSet class.

Examples of some of the JIDBC 2.0 update methods available in jConnect are:

voi d updat eAscii Stream(String col umNane, java.io.lnputStream X,
int length) throws SQLException;
voi d updat eBool ean(i nt col umml ndex, bool ean x) throws
SQLExcepti on;
voi d updat eFl oat (i nt col umml ndex, float x) throws SQLException;
voi d updatelnt(String col umNane, int x) throws SQLException;
voi d updatelnt (int columlndex, int x) throws SQLException;
voi d updat eCbj ect (String col utmNanme, Cbject x) throws
SQLExcepti on;

Methods for Updating the Database from a Result Set

JDBC 2.0 specifies two new methods for updating or deleting rows in the
database, based on the current valuesin aresult set. These methods are simpler
in form than Statement.executeUpdate() in JDBC 1.x and do not require a
cursor name. They are implemented in SybCursorResultSet:

48

CHAPTER 2 Programming Information

void updateRow() throws SQLException;
void deleteRow() throws SQLException;

Note The concurrency of the result set must be CONCUR_UPDATABLE,
otherwise the above methods will raise an exception. For insertRow(), all
table columns that require non-null entries must be specified.

Methods provided on DatabaseMetaData dictate when these changes are
visible.

Example Thefollowing example creates asingle Statement object that is used to return
acursor result set. For each row in the result set, column values are updated in
memory and then the database is updated with the row’s new column values.

/1 Create a Statenment object and set fetch size to
/1 25. This creates a cursor for the Statenent
/1 object Use the statenent to return a cursor
/'l result set.
SybSt at ement syb_stnmt =
(SybsSt at enent) conn. creat eSt at ement () ;
syb_stnt. set Fet chSi ze(25);
SybCur sor Resul t Set syb_rs =
(SybCursorResul t Set) syb_st nt. execut eQuery(
"SELECT * from Tl WHERE ...")

/1 Update each row in the result set according to

/1 code in the follow ng while | oop. jConnect

/| fetches 25 rows at a tinme, until fewer than 25

/1 rows are left. Its last fetch takes any

/1 remaining rows.

whil e(syb_rs.next())

{

/1 Update colums 2 and 3 of each row, where

/1 colum 2 is a varchar in the database and

/1 colum 3 is an integer.

syb_rs.updateString(2, "xyz");

syb_rs. updatel nt (3, 100);

/1 Now, update the row in the database.

syb_rs. updat eRow() ;

}

/'l Create a Statenent object using the

/1 JDBC 2.0 nethod inplenented in jConnect 5.Xx
Statenment stnt = conn. createStat enent

(Resul t Set. TYPE_FORWARD_ONLY, Resul t Set . CONCUR_UPDATABLE) ;
/1 Use the Statement to return an updatabl e Result Set

49

Working with Databases

ResultSet rs = stmt.executeQuery(“SELECT * FROM T1 WHERE...");
I/l In jConnect 5.x, downcasting to SybCursorResultSet is not

I/l necessary. Update each row in the ResultSet in the same

/l manner as above

while (rs.next())

rs.updateString(2, “xyz");
rs.updatelnt(3,100);
rs.updateRow();

Deleting a Row from a Result Set

To delete arow from a cursor result set, you can use
SybCursorResultSet.deleteRow() as follows:

while(syb_rs.next())

{
int col3 = getint(3);
if (col3 >100)

syb_rs.deleteRow();
}

Inserting a Row Into a Result Set

50

The following example illustrates how to do inserts using the JDBC 2.0 AP,
which isonly available in jConnect 5.x. There is no need to downcast to a
SybCursorResultSet.

Il prepare to insert
rs.moveTolnsertRow();

// populate new row with column values
rs.updateString(1, "New entry for col 1");
rs.updateint(2, 42);

Il insert new row into db

rs.insertRow();

/I return to current row in result set
rs.moveToCurrentRow();

CHAPTER 2 Programming Information

Using a Cursor with a PreparedStatement

Once you create a Prepared Statement object, you can use it multiple times
with the same or different values for itsinput parameters. If you use a cursor
with a PreparedStatement object, you need to close the cursor after each use
and then reopen the cursor to use it again. A cursor is closed when you close
itsresult set (ResultSet.close()). It is opened when you execute its prepared
statement (PreparedStatement.executeQuery()).

The following example shows how to create a Prepared Statement object,
assign it a cursor, and execute the Prepared Statement object twice, closing
and then reopening the cursor.

/1l Create a prepared statenent object with a
/| paraneterized query.

PreparedSt at ement prep_stnt =

conn. pr epar eSt at enent (

"SELECT au_id, au_lnanme, au_fnanme "+

"FROM aut hors WHERE city = ? "+

"FOR UPDATE OF au_l nanme");

// Create a cursor for the statenent.
prep_stnt. set Cursor Name("aut hor _cursor");

/1 Assign the paraneter in the query a val ue.
/1 Execute the prepared statenent to return a
/'l result set.

prep_stnt.setString(1l, "OGakland");

ResultSet rs = prep_stnt. executeQuery();

// Do sone processing on the result set.
whil e(rs.next())

{
}

/! Close the result, which also closes the cursor.
rs.close();

/1 Execute the prepared statenment again with a new
/| paraneter val ue.

prep_stnt.setString(1,"San Francisco");

rs = prep_stnt.executeQuery();

/'l reopens cursor

51

Working with Databases

Support for SCROLL_INSENSITIVE Result Sets in jConnect

bool ean
bool ean
bool ean
bool ean
bool ean

52

previous() t
absol ut e(i nt
relative(int

jConnect version 5.x supports only TYPE_SCROLL_INSENSITIVE result
sets.

jConnect uses the Tabular Data Stream (TDS)—Sybase’s proprietary
protocol—to communicate with Sybase database servers. As of jConnect 5.x,
TDS does not support scrollable cursors. To support scrollable cursors,
jConnect caches the row data on demand, on the client, on each call to
ResultSet.next(). However, when the end of the result set is reached, the entire
result set is stored in the client’s memory. Because this may cause a
performance strain, we recommend that you use
TYPE_SCROLL_INSENSITIVE result sets only when the result set is
reasonably small.

Note When you use TYPE_SCROLL_INSENSITI\EesultSets in
jConnect 5.x, you can only call thel ast() method after the last row of the
ResultSet has been read. Calliniglast() before the last row is reached will
cause amnimplementedOperationException to be thrown.

A sample has been added to jConnect version 4.x that provides a limited
TYPE_SCROLL_INSENSITIVEResultSet using JDBC 1.0 interfaces.

This implementation uses standard JDBC 1.0 methods to produce a scroll-
insensitive, read-only result set; that is, a static view of the underlying data that
is not sensitive to changes made while the result set is open.
ExtendedResultSet caches all of thResultSet rows on the client. Be

cautious when you use this class with large result sets.

Thesample.ScrollableResultSet interface:
* Is an extension of JDBC 1lj@va.sql.ResultSet.

« Defines additional methods that have the same signatures as the JDBC 2.0
java.sgl.ResultSet.

* Doesnot contain all of the JDBC 2.0 methods. The missing methods deal
with modifying theResultSet.

The methods from the JDBC 2.0 API tlaa¢
hrows SQLExcepti on;

row) throws SQLException;

rows) throws SQ.Excepti on;

first() throws SQ.Exception
last() throws SQLException;
voi d beforeFirst() throws SQ.Exception;

CHAPTER 2 Programming Information

voi d afterLast() throws SQLException;

bool ean isFirst() throws SQLException;

bool ean islLast() throws SQ.Excepti on;

bool ean isBeforeFirst() throws SQ.Exception;
bool ean i sAfterLast() throws SQLException;

int getFetchSize() throws SQLException;

voi d setFetchSize(int rows) throws SQLException;
int getFetchDirection() throws SQ.Exception;

voi d setFetchDirection(int direction) throws SQ.Exception;
int getType() throws SQ.Exception;

int getConcurrency() throws SQ.Exception;

int get Row() throws SQ.Excepti on;

To use the new sampl e classes, create an ExtendedResultSet using any JDBC
1.0java.sql.ResultSet. Below are the relevant pieces of code (assume a Java
1.1 environment):

/1 inport the sanple files
i mport sanpl e. *;
//inport the JDBC 1.0 cl asses
i mport java.sql.*;
/1 connect to sonme db using sone driver;
/] create a statenment and a query;
/'l Get a reference to a JDBC 1.0 Result Set
ResultSet rs = stnt.executeQuery(_query);
/'l Create a ScrollableResultSet with it
Scrol | abl eResult Set srs = new Ext endedResul t Set(rs);
/1 invoke methods fromthe JDBC 2.0 API
srs. beforeFirst();
/'l or invoke nmethods fromthe JDBC 1.0 API
if (srs.next())

String columl = srs.getString(1);

Figure 2-1 isaclass diagram that shows the relationships between the new
sample classes and the JIDBC API.

53

Working with Databases

Figure 2-1: Class diagram

java.sql.ResultSet

(JCBC 1.0 AR)

extends

sample.ScrollableResults et

(adds some methods from
JDBC 2.0 AP

sampl e.E xtendedR esultSet

[wrapper for
java.sgl R esultSet)

See the IDBC 2.0 AP at http://java.sun.com/products/jdbc/jdbcse2.html for
more details.

Support for Batch Updates

Batch updates allow a Statement object to submit multiple update commands
as one unit (batch) to an underlying database for processing together.

Note Tousebatch updates, you must refresh the SQL scriptsin the sp directory
under your jConnect installation directory.

54

CHAPTER 2 Programming Information

See BatchUpdates.java in the sample (jConnect 4.x) and sample2 (jConnect
5.x) subdirectories for an example of using batch updates with Statement,
PreparedStatement, and CallableStatement.

jConnect also supports dynamic PreparedStatements in batch.

Implementation Notes

jConnect implements batch updates as specified in the JDBC 2.0 API, except
as described below.

If the JIDBC 2.0 standard for implementing
BatchUpdateException.getUpdateCounts() is modified or relaxed in

the future, jConnect will continue to implement the original standard by
havingBatchUpdateException.getUpdateCounts() return arint[]

length of M < N, indicating that the first M statements in the batch
succeeded, that the M+1 statement failed, and M+2..N statements were not
executed; where “N” equals the total statements in the batch.

Batch updates of stored procedures

To call stored procedures in batch (unchained) mode, you must create the
stored procedure in unchained mode. For more information, see “Stored
Procedure Executed in Unchained Transaction Mode” on page 103.

Adaptive Server Enterprise version 11.5.x and later

BatchUpdateException.getUpdateCounts() will return only anint[]
length of zero. The entire transaction is rolled back if an error is
encountered, resulting in zero successful rows.

Adaptive Server Enterprise version 11.0.1
Returns 0 (zero) rows affected for stored procedures.
SQL Anywhere version 5.5.x

¢ SQL Anywhere version 5.5.x does not allow you to obtain inserted
row counts from stored procedures that contain inserts. For example:

create proc sp_A as insert tableA values (1,
‘hello A’)

create proc sp_B

as

insert tableA values (1, ‘hello A")

update tableA set col1=2

create proc sp_C

as

55

Working with Databases

updat e tabl eA set col 1=2
del ete tabl eA

Running executeBatch on the preceding stored procedures would
result in, respectively:

0 Rows Affected
1 Rows Affected
2 Rows Affected

e There is no support for dynanficeparedStatements in batch.

e Because SQL Anywhere 5.5.x does not natively support batch
updates according to the JDBC 2.0 specification, batch updates are
carried out in amxecuteUpdate loop.

e Batch updates in databases that do not support batch updates

jConnect carries out batch updates ir@ecuteUpdate loop even if your
database does not support batch updates. This allows you to use the same
batch code, regardless of the database to which you are pointing.

SeeSun Microsystems, Inc. JDBC™ 2.0 A& more details on batch updates.

Updating the Database from the Result Set of a Stored Procedure

jConnect includes update and del ete methods that allow you to get a cursor on

the result set returned by a stored procedure. You can then use the cursor’s
position to update or delete rows in the underlying table that provided the result
set. The methods are §ybCursorResultSet:

void updateRow(String tableName) throws SQLException;
void deleteRow(String tableName) throws SQLException;

ThetableName parameter identifies the database table that provided the result
set.

To get a cursor on the result set returned by a stored procedure, you need to use
eitherSybCallableStatement.setCursorName() or
SybCallableStatement.setFetchSize() before you execute the callable

statement that contains the procedure. The following example shows how to
create a cursor on the result set of a stored procedure, update values in the result
set, and then update the underlying table using the
SybCursorResultSet.update() method:

/1l Create a Call abl eStatenent object for executing the stored
/'l procedure.

56

CHAPTER 2 Programming Information

Cal | abl eSt at enent sproc_stnt =
conn. prepareCall ("{call update_titles}");

/1l Set the nunber of rows to be returned fromthe database with
/1l each fetch. This creates a cursor on the result set.
(SybCal | abl eSt at enent) sproc_stnt . set Fet chSi ze(10);

/| Execute the stored procedure and get a result set fromit.
SybCur sor Resul t Set sproc_result = (SybCursorResult Set)
sproc_stnt. executeQuery();

/1 Move through the result set row by row, updating values in the
Il cursor’s current row and updating the underlying titles table

/I with the modified row values.

while(sproc_result.next())

{
sproc_result.updateString(...);
sproc_result.updatelnt(...);
sproc_result.updateRowf(titles);
}

Working with Datatypes

Sending /Image Data

jConnect has a TextPointer class with sendData() methods for updating an
image column in an Adaptive Server Enterprise or Adaptive Server Anywhere
database. In earlier versions of jConnect, you had to send image data using the
setBinaryStream() method in java.sql.PreparedStatement. The
TextPointer.sendData() methods use java.io.InputStream and greatly
improve performance when you send image data to an Adaptive Server
database.

To obtain instances of the TextPointer class, you can use either of two
getTextPtr() methodsin SybResultSet:

public TextPointer getTextPtr(String columnName)
public TextPointer getTextPtr(int columnindex)

57

Working with Databases

Public Methods in the TextPointer Class

58

The com.sybase.jdbc package contains the TextPointer class. Its public
method interfaceis:

public void sendData(InputStream is, boolean log)
throws SQLException

public void sendData(InputStream is, int length,
boolean log) throws SQLException

public void sendData(InputStream is, int offset,
int length, boolean log) throws SQLException

public void sendData(byte[] bytelnput, int offset,
int length, boolean log) throws SQLEXception

sendData(InputStream is, boolean |og) — Updates ammagecolumn with data
in the specified input stream.

sendData(InputStream is, int length, boolean |log) — Updates aimage
column with data in the specified input streaength is the number of bytes
being sent.

sendData(InputStream is, int offset, int length, boolean log) — Updates an
imagecolumn with data in the specified input stream, starting at the byte offset
given in theoffset parameter and continuing for the number of bytes specified
in thelength parameter.

sendData(byte[] bytelnput, int offset, int length, boolean log) — Updates a
column with image data contained in the byte array specified inythienput
parameter. The update starts at the byte offset given afiftheparameter and
continues for the number of bytes specified inlthgth parameter.

Each method haslag parameter. Thieng parameter specifies whethierage

data is to be fully logged in the database transaction log. [lbghEarameter is

set to “true,” the entire binary image is written into the transaction log. If the
log parameter is set to “false,” the update is logged, but the image itself is not
included in the log.

Updating an Image Column with TextPointer.sendData()

To update a column with image data:
1 Get arextPointer object for the row and column that you want to update.

2 UseTextPointer.sendData() to execute the update.

CHAPTER 2 Programming Information

The next two sections illustrate these steps with an example. In the example,
image datafromthefile Anne_Ringer.qgif is sent to update the pic column of the
au_pix table in the pubs2 database. The update is for the row with author 1D
899-46-2035.

Getting a TextPointer text and image columns contain timestamp and page-location information that
Object is separate from their text and image data. When datais selected from atext or
image column, this extra information is “hidden” as part of the result set.

A TextPointer object for updating amagecolumn requires this hidden
information, but does not need the image portion of the column data. To get this
information, you need to select the column inReaultSet object and then use
SybResultSet.getTextPtr() (see the example that follows the next paragraph).
SybResultSet.getTextPtr() extracts text-pointer information, ignores image
data, and createsTaxtPointer object.

In cases where a column contains a significant amount of image data, selecting
the column for one or more rows and waiting to get all the data is likely to be
inefficient, since the data is not used. You can shortcut this process by using the
set textsize command to minimize the amount of data returned in a packet.
The following code example for gettingraxtPointer object includes the use
of set textsize for this purpose.
/*

* Define a string for selecting pic colum data for author ID

* 899-46-2035.

*/

String get Col uimbDat a = "sel ect pic fromau_pi x where au_id ="' 899-46-2035"";

/*

* Use set textsize to return only a single byte of colum data
* to a Statenent object. The packet with the colum data will
* contain the "hidden" information necessary for creating a

* Text Poi nter object.

*/

Statenent stmt= connection.createStatenent();

stnt. execut eUpdat e("set textsize 1");

/*

* Sel ect the colum data into a ResultSet object--cast the

* ResultSet to SybResultSet because the getTextPtr nmethod is

* in SybResultSet, which extends Result Set.

*/

SybResul tSet rs = (SybResultSet)stnt. executeQuery(get Col umbat a) ;

/*

59

Working with Databases

* Position the result set cursor on the returned columm data
* and create the desired TextPointer object.

*/

rs.next();

TextPointer tp = rs.getTextPtr("pic");

/ *

* Now, assuming we are only updating one row, and won't need
* the minimum textsize set for the next return from the server,

* we reset textsize to its default value.

*/

stmt.executeUpdate("set textsize 0");

LEJx%lcuting_ thhe The following code uses the TextPointer object from the preceding section to
P ate wit| H H H i i 1 i
TextPointer.sendData update the pic column with image data in the file Anne_Ringer.gif.

/*

* First, define an input stream for the file.
*/
FileInputStream in = new FilelnputStream("Anne_Ringer.gif");

/*

* Prepare to send the input stream without logging the image data
* in the transaction log.

*/

boolean log = false;

/*

* Send the image data in Anne_Ringer.gif to update the pic

* column for author ID 899-46-2035.

*/

tp.sendData(in, log);
See the TextPointers.java sample in the sample (jConnect 4.x) and sample2
(jConnect 5.x) subdirectories under your jConnect installation directory for
more information.

Using Date and Time Datatypes

60

JDBC uses three temporal datatypes: Time, Date, and Timestamp. Adaptive
Server uses only one temporal datatype, datetime, which is equivalent to the
JDBC Timestamp datatype. The Adaptive Server datetime datatype supports
second resolution to 1/300th of a second.

CHAPTER 2 Programming Information

Implementation Notes

All three JDBC datatypes are treated as datetime datatypes on the server side.
A JDBC Timestamp is essentially the same as a server datetime; therefore, no
conversion is necessary. However, translating a JDBC Time or Date datatype
to or from a server datetime datatype requires a conversion.

¢ To converfTimeto datetimethe date 1 Jan 1970 is added.
e To convertDateto datetime “00:00:00” is appended.

* To convert alatetimeto aDatevariable or aime variable, the unused
information is stripped out.

« JDBC'sTimestampdatatype is not the same as Adaptive Server’s
timestampdatatype. The Adaptive Serignmestampdatatype is a unique
varbinaryvalue used when updates are made with an “optimistic
concurrency” strategy.

* When avalue is inserted aSiane datatype, the date portion is essentially

meaningless, so the value should be fetched back using ®ithea
datatype, never Bateor Timestampdatatype.

¢ If you usegetObject() with an Adaptive Server Anywhetkte or time
column, the value will be returned as a JDBi@estamp datatype.

Charlvarcharl Text Datatypes and getByte()

Do not uses.getByte() on achar, varchar ortextfield unless the data is hex,
octal, or decimal.

61

Implementing Advanced Features

Implementing Advanced Features

This section describes how to use advanced jConnect features and containsthe
following topics:

« Using Event Notification

e Handling Error Messages

e Storing Java Objects as Column Data in a Table
e Dynamic Class Loading

« JDBC 2.0 Optional Package Extensions Support

Using Event Notification

62

You can use the jConnect event notification feature to have your application
notified when an Open Server procedure is executed.

To use this feature, you must use$fgieConnection class, which extends the
Connection interface SybConnection contains aegWatch() method for
turning event notification on andregNoWatch() method for turning event
notification off.

Your application must also implement thgbEventHandler interface. This
interface contains one public methedjd event(String proc_name,
ResultSet params), which is called when the specified event occurs. The
parameters of the event are passeglémt() and it tells the application how
to respond.

To use event notification in your application, &lbConnection.regWatch()
to register your application in the notification list of a registered procedure. Use
this syntax:

SybConnection.regWatch(proc_name,eventHdlr,option)

e proc_nameis aStringthat is the name of the registered procedure that
generates the notification.

e eventHdler is an instance of theybEventHandler class that you
implement.

e optionis either NOTIFY_ONCE or NOTIFY_ALWAYS. Use
NOTIFY_ONCE if you want the application to be notified only the first
time a procedure executes. Use NOTIFY_ALWAYS if you want the
application to be notified every time the procedure executes.

CHAPTER 2 Programming Information

Whenever an event with the designated proc_name occurs on the Open Server,
jConnect callseventHdIr.event() from aseparatethread. The event parameters
are passed to eventHdlIr.event() when it is executed. Because it is a separate

thread, event notification does not block execution of the application.

If proc_nameisnot aregistered procedure, or if Open Server is unable to add
the client to the notification list, the call to regwatch() throws a SQL
exception.

To turn off event notification, use this call:

SybConnect i on. regNoWat ch(proc_nane)

Note When you use Sybase event notification extensions, the application
needs to call the close() method on the connection to remove a child thread
created by thefirst call to regWatch(). Failing to do so may cause the Virtual
Machine to hang when exiting the application.

Event Notification Example

The following example shows how to implement an event handler and then
register an event with an instance of your event handler, once you have a
connection:

public class MyEvent Handl er inpl enents SybEvent Handl er

{

/1 Declare fields and constructors, as needed.

public MyEvent Handl er (String event nane)

{
}

/1 | npl enent SybEvent Handl er. event .
public void event(String event Nane, ResultSet parans)

{

try

{

/1 Check for error nessages received prior to event
/'l notification.

SQLVr ni ng sqgl w = par ans. get VWar ni ngs() ;

if sglw!= null

/'l process errors, if any

63

Implementing Advanced Features

}

}
/'l process parans as you would any result set with
/1 one row.
Resul t Set Met aData rsnd = par ans. get Met aDat a() ;
i nt numCol ums = rsnd. get Col umCount () ;
whil e (parans. next()) /1 optional
{
for (int i = 1; i <= nunColumms; i++)
{
System out . println(rsnd. get Col umNane(i) + " =
+ parans.getString(i));
}
/| Take appropriate action on the event. For exanple,
/'l perhaps notify application thread.

}
}
catch (SQLException sqge)
{
/'l process errors, if any
}

}

public class MyProgram

{

64

/1 Get a connection and register an event with an instance
/1 of MyEvent Handl er.

Connecti on conn = Driver Manager. get Connection(...);

MyEvent Handl er nyHdl r = new MEvent Handl er (" MY_EVENT") ;

/1 Register your event handler.
((SybConnecti on) conn).regWat ch(" MY_EVENT", nyHdIr,
SybEvent Handl er . NOTI FY_ALWAYS) ;

conn. r egNoWat ch(" MY_EVENT") ;
conn. cl ose();

CHAPTER 2 Programming Information

Handling Error Messages

jConnect providestwo classesfor returning Sybase-specific error information,
SybSQLException and SybSQLWarning, aswell asaSybMessageHandler
interface that allows you to customize the way jConnect handles error
messages received from the server.

Retrieving Sybase-Specific Error Information

jConnect provides an EedInfo interface that specifies methods for obtaining
Sybase-specific error information. The EedInfo interfaceisimplemented in
SybSQLException and SybSQLWarning, which extend the SQLException
and SQLWarning classes.

SybSQLException and SybSQLWarning contain the following methods:

public ResultSet getEedParams();

Returns a one-row result set containing any parameter values that
accompany the error message.

public int getStatus();

Returns a “1” if there are parameter values, returns a “0” if there are no
parameter values in the message.

public int getLineNumber();

Returns the line number of the stored procedure or query that caused the
error message.

public String getProcedureName();

Returns the name of the procedure that caused the error message.
public String getServerName();

Returns the name of the server that generated the message.
public int getSeverity();

Returns the severity of the error message.

public int getState();

Returns information about the internal source of the error message in the
server. For use by Sybase Technical Support only.

public int getTranState();

Returns one of the following transaction states:

65

Implementing Advanced Features

e 0 The connection is currently in an extended transaction.
e« 1 The previous transaction committed successfully.
« 3 The previous transaction aborted.

Note that some error messages mag@QeException or SQLWarning
messages, without beirBybSQLException or SybSQLWarning messages.
Your application should check the type of exception it is handling before it
downcasts t®&ybSQLException or SybSQLWarning.

Customizing Error Message Handling

66

You can use thBybMessageHandler interface to customize the way jConnect
handles error messages generated by the server. Implementing
SybMessageHandler in your own class for handling error messages can
provide the following benefits:

e “Universal” error handling

Error handling logic can be placed in your error-message handler, instead

of being repeated throughout your application.
e “Universal” error logging

Your error-message handler can contain the logic for handling all error
logging.

« Remapping of error-message severity, based on application requirements.

Your error-message handler can contain logic for recognizing specific
error messages and downgrading or upgrading their severity based on
application considerations rather than the server’s severity rating. For

example, during a cleanup operation that deletes old rows, you might want
to downgrade the severity of a message that a row does not exist; you may

want to upgrade the severity in other circumstances.

Note Error-message handlers implementing $lggMessageHandler
interface only receive server-generated messages. They do not handle
messages generated by jConnect.

CHAPTER 2 Programming Information

When jConnect receives an error message, it checksto seeif a
SybMessageHandler class hasbeen registered for handling the message. If so,
jConnect invokes the messageHandler() method. The messageHandler()
method accepts a SQL exception as its argument, and jConnect processes the
message based on what value is returned from messageHandler(). The error-
message handler can:

¢ Return the SQL exception as is.
¢ Return a null. As a result, jConnect ignores the message.

¢ Create a SQL warning from a SQL exception, and return it. This results in
the warning being added to the warning-message chain.

e If the originating message is a SQL warnimgssageHandler() can
evaluate the SQL warning as urgent and create and return a SQL exception
to be thrown once control is returned to jConnect.

Installing an Error-Message-Handler

You can install an error-message-handler implemesyid/lessageHandler
by calling thesetMessageHandler() method fromSybDriver,
SybConnection, or SybStatement. If you install an error-message--handler
from SybDriver, all subsequerybConnection objects inherit it. If you
install an error-message-handler froy&dConnection object, it is inherited
by all SybStatement objectscreated by thasybConnection.

This hierarchy only applies from the time the error-message-handler object is
installed. For example, if you creat&gConnection object,myConnection,

and then calBybDriver.setMessageHandler() to install an error-message-
handler objectyyConnection cannot use that object.

To return the current error-message-handler object, use
getMessageHandler().

Error-Message-Handler Example

i mport java.io.*;

java.sql.*;

com sybase. j dbcx. SybMessageHand| er;
com sybase. j dbcx. SybConnecti on;
com sybase. j dbcx. SybSt at ement ;
java.util.*;

i nport
i nport
i mport
i mport
i mport

public

class MyApp

The following example uses jConnect version 4.1.

67

Implementing Advanced Features

{
static SybConnection conn = null;
static SybStatenment stmt = null
static ResultSet rs = null;
static String user = "guest"”;
static String password = "sybase";
static String server = "jdbc:sybase: Tds: 192. 138. 151. 39: 4444";
static final int AVO D _SQ.E = 20001;
public M/App()
{
try
{
Cl ass. for Nane("com sybase. j dbc. SybDri ver"). new nst ance;
Properties props = new Properties();
props. put ("user", user);
props. put ("password", password);
conn = (SybConnecti on)
Dri ver Manager . get Connecti on(server, props);
conn. set MessageHand! er (new NoResul t Set Handl er ()) ;
stnt =(SybStatenent) conn.createStatenent();
stnt. execut eUpdat e("rai serror 20001 'your error’");
for (SQWarning sqw = _stnt.get Warni ngs();
sqw !'= nul | ;
sqw = sqw. get Next War ni ng());
{
if (sqw. get ErrorCode() == AVO D _SQLE);
{
Systemout.println("Error" +sqw. getErrorCode() +
" was found in the Statement’s warning list.");
break;
}
}
stmt.close();
conn.close();
}
catch(Exception e)
{
System.out.printin(e.getMessage());
e.printStackTrace();
}
}

class NoResultSetHandler implements SybMessageHandler

{

68

CHAPTER 2 Programming Information

public SQLExcepti on nessageHandl er (SQLExcepti on sqe)

{
int code = sqge. get Error Code();
if (code == AVO D_SQLE)
{
Systemout.println("User " + _user + " downgrading " +
AVO D SQLE + " to a warning");
sgqe = new SQ.War ni ng(sge. get Message(),
sqe. get SQLSt at e(), sqge. get Error Code());
}
return sqe;
}
}
public static void main(String args[])
{
new M/App() ;
}

Storing Java Objects as Column Data in a Table

Some database products make it possible to directly store Java objects as
column dataiin a database. In such databases, Java classes are treated as
datatypes, and you can declare a column with a Java class as its datatype.

jConnect supports storing Java objects in a database by implementing the
setObject() methods defined in the Prepared Statement interface and the
getObject() methods defined in the CallableStatement and ResultSet
interfaces. Thisallowsyou to use jConnect with an application that uses native
JDBC classesand methodsto directly store and retrieve Java objects as column
data.

Note To usegetObject() and setObject(), set the jConnect version to
VERSION_4 or higher. See “Setting the jConnect Version” on page 6.

The following sections describe the requirements and procedures for storing
objects in a table and retrieving them using JDBC with jConnect:

¢ Prerequisites for Storing Java Objects As Column Data

¢ Sending Java Objects to a Database

69

Implementing Advanced Features

« Receiving Java Objects from the Database

Note Adaptive Server Enterprise version 12.0 and Adaptive Server Anywhere
version 6.0.x and later are able to store Java objects in a table, with some
limitations. See thgConnect for JDBC Release Bulletin for more information.

Prerequisites for Storing Java Objects As Column Data

To store Java objects belonging to a user-defined Java class in a column, three
requirements must be met:

e The class must implement tfava.io.Serializable interface. This is
because jConnect uses native Java serialization and deserialization to send
objects to a database and receive them back from the database.

e The class definition must be installed in the destination datatrageu
must be using thBynamicClassLoader (DCL) to load a class directly
from an Adaptive Server Anywhere or an Adaptive Server Enterprise
server and use it as if it was present in the local CLASSPATH. See
“Dynamic Class Loading” on page 74 for more information.

* The client system must have the class definition.ahaas file that is
accessible through the local CLASSPATH environment variable.

Sending Java Objects to a Database

To send an instance of a user-defined class as column data, use one of the
following setObject() methods, as specified in tRespared Statement
interface:

voi d set Obj ect (int paraneterlndex, Object x, int targetSql Type,
int scale) throws SQ.Excepti on;

voi d set Obj ect (i nt paraneterlndex, Object x, int targetSql Type)
throws SQLExcepti on;

voi d set Obj ect (i nt paraneterlndex, Object x) throws SQ.Exception;

The following example defines address class, shows the definition of a
Friendstable that has afwddress column whose datatype is thddress class,
and inserts a row into the table.

public class Address inplenments Serializable

{
public String streetNunber;
public String street;
public String apartmnment Nunber;

70

CHAPTER 2 Programming Information

public String city;
public int zipCode;
/1 Met hods

}

/* This code assunes a table with the followi ng structure
** Create table Friends:

** (firstname varchar (30),

** | astnanme varchar (30),

** address Address,

** phone varchar (15))

*/

/1l Connect to the database containing the Friends table.
Connection conn =
Dri ver Manager . get Connecti on("j dbc: sybase: Tds: | ocal host: 5000",
"user nane", "password");

/1l Create a Prepared Statenent object with an insert statenent

//for updating the Friends table.

Prepar edSt at ement ps = conn. prepareStat enent ("1 NSERT | NTO
Friends values (?,?,?2,?2)");

/1 Now, set the values in the prepared statenent object, ps.
/1 set firstnanme to "Joan."
ps.setString(l, "Joan");

/1 Set last name to "Smith."
ps.setString(2, "Snmith");

/1 Assumi ng that we already have "Joan_address" as an instance
/1 of Address, use setObject(int paraneterlndex, Ohject x) to
/1l set the address colum to "Joan_address."

ps. set Qbj ect (3, Joan_address);

/I Set the phone column to Joan’s phone number.
ps.setString(4, "123-456-7890");

/I Perform the insert.
ps.executeUpdate();

71

Implementing Advanced Features

Receiving Java Objects from the Database

/*

A client JDBC application can receive a Java object from the database in a
result set or as the value of an output parameter returned from a stored
procedure.

e If aresult set contains a Java object as column data, use one of the
following getObject() methods in th&®esultSet interface to retrieve the
object:

hj ect get Obj ect(int columl ndex) throws SQLException;
Chj ect get Obj ect (String col umNane) throws SQLExcepti on;

« If an output parameter from a stored procedure contains a Java object, use
the followinggetObject() method in theCallableStatement interface to
retrieve the object:

Chj ect get Obj ect (int paraneterlndex) throws SQLExcepti on;

The following example illustrates the use of

ResultSet.getObject(int parameterindex) to assign an object received in a
result set to a class variable. The example usesdtiess class andrriends

table used in the previous section and presents a simple application that prints
a name and address on an envelope.

** This application takes a first and | ast nane, gets the
** specified person’s address from the Friends table in the

** database, and addresses an envelope using the name and

** retrieved address.

*/

public class Envelope

{

72

Connection conn = null;
String firstName = null;
String lastName = null;
String street = null;
String city = null;

String zip = null;

public static void main(String[] args)

{

if (args.length < 2)

{

System.out.printin("Usage: Envelope <firstName>
<lastName>");

System.exit(1);

}

CHAPTER 2 Programming Information

/1l create a 4" x 10" envel ope
Envel ope e = new Envel ope(4, 10);
try
{
/1 connect to the database with the Friends table.
conn = Driver Manager . get Connecti on(
"j dbc: sybase: Tds: | ocal host: 5000", "usernang",
"password");
/1 1ook up the address of the specified person
firstNane = args[0];
| ast Nane = args[1];
Prepar edSt at ement ps = conn. prepar eSt at enent (
"SELECT address FROM friends WHERE " +
"firstnane = ? AND | astnane = ?");
ps.setString(1l, firstNane);
ps.setString(2, |astNane);
Resul t Set rs = ps. executeQuery();
if (rs.next())
{
Address a = (Address) rs.getObject(1);
/1 set the destination address on the envel ope
e. set Address(firstNane, |astNanme, a);

conn. cl ose();

}
catch (SQLException sqge)
{
sqe. print StackTrace();
System exit(2);
}
/1 if everything was successful, print the envel ope
e.print();

}

private void setAddress(String fname, String | name, Address a)
{
street = a.streetNunber + " " + a.street + " " +
a. apart ment Nunber ;
city = a.city;

zip ="" + a.zipCode;
Lrivate void print()
{ /1 Print the name and address on the envel ope.
}

73

Implementing Advanced Features

You can find a more detailed example of HandleObject.java in the sample
(jConnect 4.x) and sample2 (jConnect 5.x) subdirectories under your jConnect
directory.

Dynamic Class Loading

Adaptive Server Anywhereversion 6.0 and Adaptive Server Enterpriseversion
12.0 offer Java classesin SQL (JCS), which allow you to specify Java classes
as.

« Datatypes of SQL columns
« Datatypes of Transact-SQL variables
e Default values for SQL columns

Previously, only classes that appeared in jConnect's CLASSPATH were
accessible; that is, if a jConnect application attempted to access an instance of
a class that was not in the local CLASSPATlihwa.lang.ClassNotFound
exception would result.

jConnect version 5.2 implemeritgnamicClassLoader (DCL) to load a class
directly from an Adaptive Server Anywhere or Adaptive Server Enterprise
server and use it as if it was present in the local CLASSPATH.

All security features present in the superclass are inherited. The loader
delegation model implemented in Java 2 is followed—first jConnect attempts
to load a requested class from the CLASSPATH,; if that fails, jConnect tries the
DynamicClassLoader.

See theAdaptive Server Enterprise Version 12.0 Feature Overview for more
detailed information about JCS and Adaptive Server.

Using DynamicClassLoader

74

To use DCL functionality, follow this procedure:

1 Create and configure a class loader. Your jConnect application’s code
should look similar to this:

Properties props = new Properties();

/1 URL of the server where the classes I|ive.
String classesU | = "jdbc:sybase: Tds: nyase: 1200";

/1 Connection properties for connecting to above server.
props. put ("user", "grinch");

CHAPTER 2 Programming Information

props. put (" password", "meanone");

/1l Ask the SybDriver for a new class | oader.
Dynani cCl assLoader | oader = driver.getC assLoader (cl assesUrl, props);

2 Usethe CLASS LOADER connection property to make the new class
loader available to the statement that executes the query. Once you create
the class loader, pass it to subsequent connections as shown below
(continuing from the code example in step 1).

/1 Stash the class | oader so that other connection(s)
/'l can know about it.
props. put (" CLASS LOADER', | oader);

/1 Additional connection properties
props. put("user", "joeuser");
props. put (" password", "joespassword");

/1 URL of the server we now want to connect to.
String url = "jdbc:sybase: Tds:j dbc. sybase. com 4446";

/1 Make a connection and go.
Connecti on conn = DriverManager. get Connection(url, props);

Assuming the following Java class definition:

class Addr {
String street;
String city;
String state;
}

and the following SQL table definition:
create table enployee (char(100) nane, int enpid, Addr address)

3 Usethefollowing client-side code in the absence of an Addr classin the
client application’s CLASSPATH:

Statenent stmmt = conn. createStatenent();
/'l Retrieve sone rows fromthe table that has a Java cl ass
/1 as one of its fields.
Resul t Set rs = stmmt. execut eQuery(

"select * from employee where empid ='19™);
if (rs.next() {

/I Even though the class is not in our class path,

/I we should be able to access its instance.

Object obj = rs.getObject("address");

/l The class has been loaded from the server,

I so let's take a look.

75

Implementing Advanced Features

Class ¢ = obj.getd ass();
/] Some Java Reflection can be done here
/1 to access the fields of obj.

TheCLASS L OADER connection property providesaconvenient mechanism
for sharing one class |oader among several connections.

You should ensurethat sharing aclass|oader across connections does not result
in class conflicts. For example, if two different, incompatible instances of class
org.foo.Bar exist in two different databases, problems can arise if you use the
same | oader to access both classes. Thefirst classis |loaded when examining a
result set from the first connection. Whenitistimeto examine aresult set from
the second connection, the class is already loaded. The second class is never
loaded, and there is no direct way for jConnect to detect this situation.

However, Java has a built-in mechanism for ensuring that the version of aclass
matches the version information in a deserialized object. The above situation
isat least detected and reported by Java.

Classes and their instances do not need to residein the same database or server,
but there is no reason why both the loader and subsequent connections cannot
refer to the same database/server.

Deserialization

Thefollowing exampleillustrates how to deserialize an object fromalocal file.
The serialized object is an instance of aclass that resides on a server and does
not exist in the CLASSPATH.

SybResultSet.getObject() makes use of DynamicObjectIinputStream,
which is a subclass of ObjectinputStream that loads a class definition from
DynamicClassLoader, rather than the default system (“boot”) class loader.

/1 Make a streamon the file containing the

//serialized object.

FilelnputStreamfil eStream = new Fil el nput Strean{"serFile");
/1 Make a "deserializer" on it. Notice that, apart
/[/fromthe additional paraneter, this is the sane

[l as Obj ect | nput St reanDynanm cChj ect | nput Stream

stream = new Dynam cObj ect | nput Strean{fil eStream | oader);
/1 As the object is deserialized, its class is

[lretrieved via the | oader from our server.

hj ect obj = streamreadObject(); stream cl ose();

76

CHAPTER 2 Programming Information

Preloading JARS

jConnect version 5.2 includes a new connection property called

PRELOAD_JARS. When defined asacomma-delimited list of JAR filenames,

the JARS files are loaded in their entirety. In this context, “JAR” refers to the
“retained JARname” used by the server. This is the JAR name specified in the
install Java program, for example:

install java new jar 'nmyJarNanme’ fromfile '/tnp/ nystuff.jar’

Advanced Features

If you set PRELOAD_JARS, the JARS are associated with the class loader, so
it is unnecessary to preload them with every connection. You should only
specify PRELOAD_JARS for one connection. Subsequent attempts to preload
the same JARS may result in performance problems as the JAR data is
retrieved from the server unnecessarily.

Note Adaptive Server Anywhere 6.x and later cannot return an JAR file as one
entity, so jConnect iteratively retrieves each class in turn. However, Adaptive
Server 12.x and later retrieves the entire JAR and loads each class that it
contains.

There are various public methodshpnamicClassLoader. For more
information, see the javadocs information:

JDBC_HOME/docg/en/javadocs

Additional features include the ability to keep a loader’s database connection
“alive” when a series of class loads is expected, and to explicitly load a single
class by name.

Public methods inherited frojava.lang.ClassLoadercan also be used.

Methods injava.lang.Class that deal with loading classes are also available;
however, use these methods with caution since some of them make
assumptions about which class loader gets used. In particular, you should use
the 3-argument version @fass.forName(), otherwise the system (“boot”)

class loader will be used.“Handling Error Messages” on page 65.

77

Implementing Advanced Features

JDBC 2.0 Optional Package Extensions Support

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Sandard Extension
API) defines several new features that may be implemented by JDBC 2.0
drivers. jConnect version 5.2 has implemented the following optional package
extension features:

e JNDI for Naming Databases
(works with any Sybase DBMS supported by jConnect)

e Connection Pooling
(works with any Sybase DBMS supported by jConnect)

« Distributed Transaction Management Support
(works only with Adaptive Server Enterprise version 12.0, or version 11.x
using XA-Server™)

The above features require classes and/or interfaces that fend in
standard Java 2 distributions. You must downjeaex.sql.* and
javax.naming.* to implement JNDI for Naming Databases and Connection
Pooling, and you must downlo@lax.transaction.xa.* to implement
Distributed Transaction Management Support.

Note Sybase recommends that you use JNDI 1.2, which is compatible with
Java 1.1.6 and later.

JNDI for Naming Databases

Reference

Related Interfaces

78

The JDBC 2.0 Optional Package (formerly theJDBC 2.0 Sandard Extension
API), Chapter 5, “JNDI and the JDBC API.”

e javax.sqgl.DataSource
e javax.naming.Referenceable

e javax.naming.spi.ObjectFactory

CHAPTER 2 Programming Information

Usage

Thisfeature provides JDBC clientswith an alternative to the standard approach

for obtaining database connections. Instead of invoking Class.forName
(“com.sybase.jdbc2.jdbc.SybDriver”), then passing a JDBC URL to the
DriverManager'gietConnection() method, clients can access a JNDI name
server using a logical name to retrieviavaax.sqgl.DataSource object. This

object is responsible for loading the driver and establishing the connection to
the physical database it represents. The client code is simpler and reusable
because the vendor-specific information has been placed within the
DataSource object.

The Sybase implementation of thetaSource object is
com.sybase.jdbcx.SybDataSource (see the javadocs for details). This
implementation supports the following standard properties using the design
pattern for JavaBean components:

e databaseName

* dataSourceName

e description

* networkProtocol

e password

e portNumber

e serverName

e user

roleName is not supported.

jConnect provides an implementation of fiaax.naming.spi.ObjectFactory
interface so th®ataSource object can be constructed from the attributes of a
name server entry. When giveljiesax.naming.Reference, or a
javax.naming.Name and gavax.naming.DirContext, this factory can
constructtom.sybase.jdbcx.SybDataSource objects. To use this factory, set
thejava.naming.object.factory system property to include
com.sybase.jdbc2.SybObjectFactory.

You can us®ataSource in different ways, in different applications. All

options are discussed below with some code examples to guide you through the
process. For more information, see the JDBC 2.0 Optional Package

(formerly theJDBC 2.0 Sandard Extension API), and the JNDI documentation

on Sun’s Web site.

79

Implementing Advanced Features

la. Configuration by jConnect has supported LDAP connectivity since version 4.0. As aresult, the
administrator: LDAP recommended approach, which requires no custom software, isto configure

DataSources as LDAP entries using the LDIF format. For example:

dn: server nane: nyASE, o=MyConpany, c=US

1.3.6.1.4.1.897.4.2.5: TCP#1# nynachi ne 4000
1.3.6.1.4.1.897.4.2.10: PACKETSI ZE=1024&user =ne&passwor d=secr et
1.3.6.1.4.1.897.4.2.11: userdb

1b. Access by client Thisisthetypical JIDBC client application. The only differenceisthat you

80

access the name server to obtain areferenceto aDataSource object, instead of
accessing the DriverManager and providing aJDBC URL. Once you obtain
the connection, the client codeisidentical to any other JDBC client code. The
codeisvery generic and references Sybase only when setting the obj ect factory
property, which can be set as part of the environment. .

The jConnect installation contains the sample program
sample2/SmpleDataSource.java to illustrate the use of DataSource. This
sampleisprovided for reference only; that is, you cannot run the sample unless
you configure your environment and edit the sample appropriately.
SmpleDataSource.java contains the following critical code:

i mport javax. nam ng.*;
i mport javax.sql.*;
i nport java.sql.*;

/'l set necessary JNDI properties for your environnent (sane as above)
Properties jndi Props = new Properties();

/1 used by JNDI to build the SybDataSource
j ndi Props. put (Cont ext . OBJECT_FACTORI ES,
"com sybase. j dbc2.j dbc. Syboj ect Fact ory");

/'l nameserver that JNDI should talk to
j ndi Props. put (Cont ext . PROVI DER_URL,
"l dap://sonme_| dap_server: 238/ o=MyConpany, c=Us");

/1 used by JNDI to establish the nami ng context
j ndi Props. put (Context. | N Tl AL_CONTEXT_FACTCRY,
"com sun. j ndi .| dap. LdapCt xFact ory");

/1 obtain a connection to your name server
Context ctx = new Initial Context(jndiProps);
Dat aSource ds = (DataSource) ctx.|ookup("servernanme=nyASE") ;

/1 obtains a connection to the server as configured earlier.
/1 in this case, the default usernane and password will be used

CHAPTER 2 Programming Information

Connecti on conn = ds. get Connection();

/!l do standard JDBC net hods

Note that explicitly passing the Properties to the InitialContext constructor is
not required if the properties have already been defined within the virtual
machine; that is, passed when Java was invoked, using

java -Djava. nam ng. obj ect. fact ory=com sybase. j dbc2. j dbc. SybObj ect Fact ory
or set as part of the browser properties.

See your Java VM documentation for more information about setting
environment properties.

2a. Configuration by This phaseistypically done by the person who does database system

administrator: custom ggminjstration or application integration for their company. The purpose s to
define a data source, then deploy it under alogical name to a name server. If
the server needs to be reconfigured (for example, moved to another machine,
port, and so on), then the administrator runsthis configuration utility (outlined
below) and reassignsthelogical nameto the new data source configuration. As
aresult, the client code does not change, since it knows only the logical name.

i mport javax.sql.*;
i mport com sybase. j dbcx. *;

/1 create a SybDataSource, and configure it

SybDat aSour ce ds = new com sybase. j dbc2. j dbc. SybDat aSour ce();

ds. set User (" ny_user nanme") ;

ds. set Passwor d(" ny_password");

ds. set Dat abaseNane("ny_favorite_db");

ds. set Server Nane("db_machi ne");

ds. set Port Nunber (4000) ;

ds. set Description("This DataSource represents the Adaptive Server
Enterprise server running on db_machine at port 2638. The default
usernane and password have been set to 'me’ and 'mine’ respectively.
Upon connection, the user will access the ny_favorite_db database on
this server.");

Properties props = newProperties()

props. put (" REPEAT_READ', "fal se");

props. put (" REQUEST_HA SESSI ON', "true");

ds. set Connecti onProperties(props);

/| store the DataSource object. Typically this is

/1 done by setting JNDI properties specific to the

/1 type of JNDI service provider you are using.

/1 Then, initialize the context and bind the object.

81

Implementing Advanced Features

Context ctx = new Initial Context();
ctx. bind("jcbc/ myASE", ds);

2b. Access by client

Once you set up your DataSource, you decide where and how you want to
store the information. To assist you, SybDataSource is both
java.io.Serializable and javax.naming.Referenceable, but it is still up to the
administrator to determine how the data is stored depending on what service
provider you are using for INDI.

The client retrieves the DataSource object by setting its INDI properties the
same way the DataSource was deployed. The client needs to have an object
factory available that can transform the object asit is stored (for example,
serialized) into a Java object.

Context ctx = new Initial Context();
Dat aSour ce ds = (DataSource ctx.|ookup("jcbhc/ myASE");

Connection Pooling

Reference

Related Interfaces

Overview

82

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Sandard Extension
API), Chapter 6, “Connection Pooling.”

e javax.sgl.ConnectionPoolDataSource

e javax.sql.PooledConnection

Traditional database applications create one connection to a database that you
use for each session of an application. However, a Web-based database
application may need to open and close a new connection several times during
the application’s use. An efficient way to handle Web-based database
connections is to use connection pooling, which maintains open database
connections and manages connection sharing across different user requests to
maintain performance and to reduce the number of idle connections. On each
connection request, the connection pool first determines if there is an idle
connection in the pool. If there is, the connection pool returns that connection
instead of making a new connection to the database.

CHAPTER 2 Programming Information

Connection pooling capabilities are provided by
ConnectionPoolDataSource. If you use thisinterface, you can pool
connections. If you use the DataSource interface, you cannot pool
connections.

When you use ConnectionPoolDataSource, pool implementations listen to
the PooledConnection. Theimplementation is notified when a user closesthe
connection, or if the user has an error that destroys the connection. At this
point, the pool implementation decides what to do with the
PooledConnection.

Without connection pooling, atransaction:
1 Creates aconnection to the database.
2 Sendsthe query to the database.
3 Gets back the resultset.
4 Displaysthe resultset.
5 Destroysthe connection.
With connection pooling, the sequence |looks more like this:
Sees if an unused connection exists in the “pool” of connections.
If so, uses it; otherwise creates a new connection.
Sends the query to the database.

1

2

3

4 Gets back the resultset.
5 Displays the resultset.
6

Returns the connection to the “pool.”
(The user still calls¢lose()”, but the connection remains open and the
pool is notified of the close request.)

It is less costly to reuse a connection than to create a new one every time a

client needs to establish a connection to a database.

To enable a third party to implement the connection pool, the jConnect
implementation has th@onnectionPoolDataSource interface produce
PooledConnections, similar to how th®ataSource interface produces
Connections.

The pool implementation creates “real” database connections, using the
getPooledConnection() methods o€onnectionPoolDataSource. Then, the
pool implementation registers itself as a listener ta*ttieded Connection.

83

Implementing Advanced Features

Currently, when a client requests a connection, the pool implementation
invokes getConnection() on an available PooledConnection. When the
client finishes with the connection and calls close(), the pool implementation
isnotified viathe ConnectionEventListener interface that the connectionis
free and available for reuse.

The pool implementation is also notified viathe ConnectionEventListener
interface if the client somehow corrupts the database connection, so that the
pool implementation can remove that connection from the pool.

For more information, refer to Appendix B of the the JDBC 2.0 Optional
Package (formerly the JDBC 2.0 Sandard Extension API).

Configuration by This approach is the same as “la. Configuration by administrator:

administrator: LDAP LDAP”described in “JNDI for Naming Databases,” except that you enter an
additional line to your LDIF entry. In the following example, the added line of
code is bolded for your reference.

er name=nyASE, o=MyConpany, c=US

1.897.4.2.5: TCP#1# nynmachi ne 4000

1.897. 4. 2. 10: PACKETSI ZE=1024&user =me&passwor d=secr et
.1.897.4.2.11: userdb
.4.1.897.4.2.18: Connect i onPool Dat aSour ce

r
3 4.
. 3. 4.
. 3. .4
. 3.
b

Access by middle-tier This procedure initializes three properties (INITIAL_CONTEXT_FACTORY,

clients PROVIDER_URL, and OBJECT_FACTORIES as shown on page 78), and
retrieves aConnectionPoolDataSource object. For a more complete code
example, seeample2/S mpleConnectionPool.java. The fundamental
difference is:

Connect i onPool Dat abase cpds = (Connecti onPool Dat aSour ce)
ct x. | ookup("servernane=nyASE") ;
Pool edConnecti on pconn = cpds. get Pool edConnecti on();

Distributed Transaction Management Support

This feature provides a standard Java API for performing distributed
transactions with either Adaptive Server Enterprise version 12.x or version
11.x with XA-Server.

Note This feature is designed for use in a large multitier environment.

84

CHAPTER 2 Programming Information

Reference

See Chapter 7, “Distributed Transactions,” inib&C 2.0 Optional Package
(formerly theJDBC 2.0 Sandard Extension API).

Related Interfaces
* javax.sgl.XADataSource

¢ javax.sgl.XAConnection

* javax.transaction.xa.XAResource

Background and System Requirements

For Adaptive Server ¢ Because jConnect is communicating directly with the resource manager

Enterprise 12.0 within Sybase Adaptive Server Enterprise version 12.0, the installation
must have Distributed Transaction Management Support.

* Any user that wants to participate in a distributed transaction must have
the “dtm_tm_role” granted to them or the transactions will fail.

e To use distributed transactions, you must install the stored procedures in
the/sp directory. Refer to “Installing Stored Procedures” in Chapter 1 of
your jConnect for JDBC Installation Guide.

Figure 2-2: Distributed Transaction Management
Support with version 12.x

Middletier
Com ponents

® TDS
Client JTA jannect “< > ASE 12.%
Application
DTM
For Adaptive Server jConnect also provides a standard Java API for performing distributed
Enterprise 11.x transactions with Adaptive Server Enterprise version 11.x as your database

server.

« This implementation works only with Sybase Adaptive Server Enterprise
version 11.x and XA-Server 11.1.

85

Implementing Advanced Features

Figure 2-3: Distributed Transaction Management Support with version
11.x

Middle-tier | YTA | jconnect
Components

3
Client T 1os
Application ¥

XA-Server TDS
1.1

M

ASE 1M.x

* The login chosen cannot have a default login databasestdr, model,
or sybsystemdb. This is because XA-Server connects only when the user's
work is associated with a distributed transaction, and distributed
transactions are not permitted on those databases.

* There is no access to metadata. While this restricts the client, it is most
likely not the part of the API being used within the boundaries of
distributed transactions.

Adaptive Server Enterprise 12.x Use

Configuration by This approach is the same as “la. Configuration by administrator:
administrator: LDAP LDAP”described in “JNDI for Naming Databases” on page 78, except that you

enter an additional line to the LDIF entry. In the following example, the added
line of code is displayed in bold.

er name: nyASE, o=MyConpany, c=US

1.897.4.2.5: TCP#1# nynmachi ne 4000

1.897. 4. 2. 10: PACKETSI ZE=1024&user =me&passwor d=secr et
.1.897.4.2.11: userdb
.4.1.897.4.2.18: XADat aSour ce

r
3 4.
. 3. 4.
. 3. .4
. 3.
b

Access by middle-tier This procedure initializes three properties (INITIAL_CONTEXT_FACTORY,
clients PROVIDER_URL, and OBJECT_FACTORIES), and retrieves a

86

XADataSource object. For example:

XADat aSour ce xads = (XADat asource) ctx. | ookup("servername=nyASE");
XAConnecti on xaconn = xads. get XAConnection();

or override the default settings for the user name and password:

XADat aSour ce xads = (XADat asource) ctx. | ookup("servername=nyASE") ;
XAConnecti on xaconn = xads. get XAConnecti on("my_usernanme", "ny_password");

CHAPTER 2 Programming Information

Adaptive Server Enterprise 11.x Use

Configuration by This approach is the same as “1a. Configuration by administrator:
administrator: LDAP LDAP”described in “JNDI for Naming Databases” on page 78, except that you
enter an additional three lines to the LDIF entry.

In the following example, the additional code lines are displayed in bold .

dn: server nane: nyASE, o=MyConpany, c=US

1.3.6.1.4.1.897.4.2.5: TCP#1# nymachi ne 4000
1.3.6.1.4.1.897.4.2.10: PACKETSI ZE=1024&user =ne&passwor d=secr et
1.3.6.1.4.1.897.4.2.11: userdb

1.3.6.1.4.1.897.4.2. 16: userconnecti on

1.3.6.1.4.1.897:4.2.17: 1

1.3.6.1.4.1.897.4.2.18: XADat aSour ce

where. . .4.2.17:1 indicates that jConnect is going to connect to an XA-Server
anduserconnection corresponds to the Logical Resource Manager (LRM) to
use. XA-Server has at_config file that contains these entries:

[xa]

| r mruser connecti on
server=ny_ase_11 server
XASer ver =ny_xa_server

Figure 2-4: Distributed Transaction Management Support sample
configuration

Middletier | “TA | jconnect
Components €

Client T
TDS
Application
my_xa_server TDS

running an: < = My_ase_11_server
mymachine 4000

See the XA-Server documentation for details on how to write aronfig file.

Access by middle-tier This procedure initializes three properties (INITIAL_CONTEXT_FACTORY,
clients PROVIDER_URL, and OBJECT_FACTORIES), and retrieves a
XADataSource object. For example:

XADat aSour ce xads = (XADat asource) ctx.| ookup("servernanme=myASE");
XAConnecti on xaconn = xads. get XAConnecti on();

With Adaptive Server Enterprise 11.x yoannot override the default user
name and password; that is, you cannot call

87

Implementing Advanced Features

xads. get XAConnecti on("my_user nane", "my_password");

because the Irmis associated with a specific user name and password.

88

CHAPTER 2 Programming Information

Handling Restrictions, Limitations, and Deviations
from JDBC Standards

This section discusses restrictions and limitations that apply to jConnect,
including how the jConnect implementation of JDBC deviates from the JDBC
1.x and 2.0 standards. The following topics are covered:

¢ Making Adjustments for Multithreading

¢ Using ResultSet.getCursorName()

e Using setLong() with Large Parameter Values
¢ Using COMPUTE Statements

e Executing Stored Procedures

Making Adjustments for Multithreading

If several threads simultaneously call methods on the Saarenent
instanceCallableStatement, or Prepared Statement—which we do not
recommend— you have to manually synchronize the calls to the methods on
the Statement; jConnect does not do this automatically.

For example, if you have two threads operating on the Sasement
instance—one thread sending a query and the other thread processing
warnings—you have to synchronize the calls to the methods &tetleeent
or conflicts may occur.

Using ResultSet.getCursorName()

Some JDBC drivers generate a cursor name for any SQL query so that a string
can always be returned. However, jConnect does not return a name when
ResultSet.getCursorName() is called, unless you either

e calledsetFetchSize() or setCursorName() on the corresponding
Statement, or

e setthe SELECT_OPENS_CURSOR connection property to “true,” and
your query was in the form of SELECT... FOR UPDATE; for example,

select au_id fromauthors for update

89

Handling Restrictions, Limitations, and Deviations from JDBC Standards

If you do not call setFetchSize() or setCursorName() on the corresponding
Statement, or set the SELECT_OPENS CURSOR connection property to
“true,” null is returned.

According to the JDBC 2.0 API (chapter 11, “Clarifications”), all other SQL
statements do not need to open a cursor and return a name.

For more information on how to use cursors in jConnect see “Using Cursors
with Result Sets” on page 44.

Using setLong() with Large Parameter Values

Implementations of thBreparedStatement.setLong() method set a
parameter value to a SQIGINT datatype. Most Adaptive Server databases
do not have an 8-by®RIGINT datatype. If a parameter value requires more
than 4 bytes of 8IGINT, usingsetLong() may result in an overflow
exception.

Using COMPUTE Statements

jConnect does not support computed rows. Results are automatically cancelled
when a query contains a computed row. For example, the following statement
is rejected:

SELECT nane FROM sysobj ects
WHERE type="S" COVWPUTE COUNT(nane)

To avoid this problem, substitute the following code:

SELECT nane from sysobj ects WHERE type="S"
SELECT COUNT(nane) from sysobjects WHERE type="S"

Executing Stored Procedures

« If you execute a stored procedure i@alableStatement object that
represents parameter values as question marks, you get better performance
than if you use both question marks and literal values for parameters.
Further, if you mix literals and question marks, you cannot use output
parameters with a stored procedure.

The following example creates sttt as aCallableStatement object for
executing the stored procedungProc:

90

CHAPTER 2 Programming Information

Cal | abl eSt atenent sp_stnmt = conn. prepareCal | (
"{call MyProc(?,?)}");

Thetwo parametersin MyProc arerepresented as question marks. You can
register one or both of them as output parameters using the
registerOutParameter() methods in the CallableStatement interface.

In the following example, sp_stmt2 is a CallableStatement object for
executing the stored procedure MyProc?2.

Cal | abl eSt atenent sp_stnt2 = conn. prepareCal | (
{"call MyProc2(?,'javelin)}");

In sp_stmt2, one parameter value is given as aliteral value and the other
as a question mark. You cannot register either parameter as an output
parameter.

¢ To execute stored procedures with RPC commands using hame-binding
for parameters, use either of the following procedures.

¢ Use language commands, passing input parameters to them directly
from Java variables using tReeparedStatement class. This is
illustrated in the following code fragment:

/1 Prepare the statement

Systemout.println("Preparing the statenent...");

String stmtString = "exec " + procnane + " @3=?, @1=?";
PreparedSt atenent pstnt = con. preparedStatenent(stntString);

/1l Set the val ues
pstnt.setString(1, "xyz");
pstnt.setlnt(2, 123);

/1 Send the query
Systemout. println("Executing the query...");
ResultSet rs = pstnt.executeQuery();

¢ With jConnect version 5.2, use the
com.sybase.jdbcx.SybCallableStatement interface, illustrated in
this example:

i mport com sybase. j dbcx. *;

/1 prepare the call for the stored procedure to execute as an RPC
String execRPC = "{call " + procName + " (2, ?2)}";

SybCal | abl eSt at enent scs = (SybCal | abl eSt at enent)

con. prepar eCal | (execRPC) ;

/1 set the values and nanme the paraneters

91

Handling Restrictions, Limitations, and Deviations from JDBC Standards

92

/'l also (optional) register for any output paraneters
scs.setString(1, "xyz");

scs. set Par anet er Nane(1, "@3");

scs.setlnt(2, 123);

scs. set Par anet er Nane(2, "@1");

/'l execute the RPC
/1 may al so process the results using getResultSet()
/1 and get MoreResul ts()

/'l see the sanples for nore information on processing results
Resul tSet rs = scs. executeQery();

CHAPTER 3

Troubleshooting

Thischapter describes sol utions and workaroundsfor problemsyou might

encounter when using jConnect.

This chapter includes these topics:

Name Page
Debugging with jConnect 94
Capturing TDS Communication 98
Unsuccessful Connection Errors 100
Memory Usage in jConnect Applications 102
Stored Procedure Errors 103
Custom Socket |mplementation Error 105

93

Debugging with jConnect

Debugging with jConnect

jConnect includes a Debug class that contains a set of debugging functions.
The Debug methods include avariety of assert, trace, and timer functions that
let you define the scope of the debugging process and the output destination for
the debugging results.

The jConnect installation also includes a complete set of debug-enabled
classes. These classes are located in the devclasses subdirectory under your
jConnect installation directory. For debugging purposes, you must redirect
your CLASSPATH environment variable to reference the debug mode runtime
classes (devclasses for jConnect 4.x and devclasses/jconn2d.jar for jConnect
5.x), rather than the standard jConnect classes directory. You can aso do this
by explicitly providing a-classpath argument to the java command when you
run a Java program.

Obtaining an Instance of the Debug Class

To use the jConnect debugging feature, your application must import the
Debug interface and obtain an instance of the Debug class by calling the
getDebug() method on the SybDriver class.

For jConnect 4.x:

i mport com sybase. j dbcx. Debug
i mport.com sybase. j dbcx. SybDebug
/1

SybDriver sybDriver = (SybDriver)
Cl ass. f or Name(" com sybase. j dbc. SybDri ver"). new nstance() ;
Debug sybdebug = sybDriver. get Debug();

For jConnect 5.x:

i mport com sybase. j dbcx. Debug
i nport.com sybase. j dbcx. SybDebug
/1

SybDriver sybDriver = (SybDriver)

Cl ass. for Name("com sybase. j dbc2. j dbc. SybDriver"). newl nstance();
Debug sybdebug = sybDriver. get Debug();

94

CHAPTER 3 Troubleshooting

Turning On Debugging in Your Application

To use the debug() method on the Debug object to turn on debugging within
your application, add this call:

sybdebug. debug(true, [classes], [printstrean]);

The classes parameter is astring that lists the specific classes you want to
debug, separated by colons. For example:

sybdebug. debug(true, "My ass")
and
sybdebug. debug(true, "M/ d ass: Your Cl ass")

“STATIC” in the class string turns on debugging for all static methods in
jConnect in addition to the designated classes. For example:

sybdebug. debug(true, " STATI C. My ass")
You can specify “ALL" to turn on debugging for all classes. For example:
sybdebug. debug(true, "ALL");

Theprintstream parameter is optional. If you do not specify a printstream, the
debug output goes to the output file you specified with
DriverManager.setLogStream().

Turning Off Debugging in Your Application
To turn off debugging, add this call:
sybdebug. debug(f al se);

Setting the CLASSPATH for Debugging

Before you run your debug-enabled application, redefine the CLASSPATH
environment variable to reference tlevclasses subdirectory under your
jConnect installation directory.

For jConnect 4.x:

e For UNIX, replacesJDBC_HOME/classes with
$IDBC_HOME/devcl asses.

¢ For Windows, replac&JDBC_HOME%b\classes with
%JDBC_HOMEY\devclasses.

95

Debugging with jConnect

For jConnect 5.x:

e For UNIX, replacesJDBC_HOME/classes/jconn2.jar with
$IDBC_HOME/devclasses/jconn2.jar.

e For Windows, replac&JDBC_HOME%\classe\jconn2.jar with
%JDBC_HOMEYo\devclasses\jconn2.jar.

Using the Debug Methods

To customize the debugging process, you can add calls toDathey
methods.

In these methods, the first (object) parameter is ustiafiyo specify the
calling object. If any of these methods are static,uefor the object
parameter.

e printin()

Use this method to define the message to print in the output log if
debugging is enabled and the object is included in the list of classes to
debug. The debug output goes to the file you specified with
sybdebug.debug().

The syntax is:
sybdebug. printl n(obj ect, nessage string);
For example:
sybdebug. println(this,"Query: "+ query);
produces a message similar to this in the output log:
nmyApp(thread[x,y, z]): Query: select * from authors
e assert()

Use this method to assert a condition and throw a runtime exception when
the condition is not met. You can also define the message to print in the
output log if the condition is not met. The syntax is:

sybdebug. assert (obj ect, bool ean conditi on, message
string);

For example:

sybdebug. assert (thi s, anount <=buf . | engt h, anount +"
too big!'");

96

CHAPTER 3 Troubleshooting

produces a message similar to this in the output log if “amount” exceeds
the value obuf.length:

java.l ang. Runti neExcepti on: myApp(thread[x,vy, z]):
Assertion failed: 513 too big!

at jdbc. sybase. utils. sybdebug. assert (

sybdebug. j ava: 338)

at myApp. nyCal | (nyApp. j ava: Xxx)
at nore stack:

startTimer()
stopTimer()

Use these methods to start and stop a timer that measures the milliseconds
that elapse during an event. The method keeps one timer per object, and
one for all static methods. The syntax to start the timer is:

sybdebug. start Ti ner (obj ect);
The syntax to stop the timer is:

sybdebug. st opTi mer (obj ect, nessage string);
For example:

sybdebug. start Tiner(this);
stnt . execut eQuery(query);
sybdebug. st opTi mer (t hi s, "execut eQuery");

produces a message similar to this in the output log:

myApp(thread[x,y, z]): executeQuery el apsed time =
25ms

97

Capturing TDS Communication

Capturing TDS Communication

Tabular Data Stream (TDS) is Sybase’s proprietary protocol for handling
communication between a client application and Adaptive Server. jConnect
includes a PROTOCOL_CAPTURE connection property that allows you to
capture raw TDS packets to a file.

If you are having problems with an application that you cannot resolve within
either the application or the server, you can use PROTOCOL_CAPTURE to
capture the communication between the client and the server in a file. You can
then send the file, which contains binary data and is not directly interpretable,
to Sybase Technical Support for analysis.

Note You can also use theibo utility to capture, translate, and display the
protocol stream flowing between the client and the server. For details on how
to obtain and usRibo, visit the jConnect utilities Web page

at http://www.sybase.com/products/internet/jconnect/utilities/

PROTOCOL_CAPTURE Connection Property

Use the PROTOCOL_CAPTURE connection property to specify a file for
receiving the TDS packets exchanged between an application and an Adaptive
Server. PROTOCOL_CAPTURE takes effectimmediately so that TDS packets
exchanged during connection establishment are written to the specified file. All
packets continue to be written to the file ugtipture.pause() is executed or

the session is closed.

The following example shows the use of PROTOCOL_CAPTURE to send
TDS data to the fileéds data:

props. put (" PROTOCOL_CAPTURE", "tds_data")

Connection conn

98

Dri ver Manager. get Connection(ur/, props);

whereurl is the connection URL anatops is aProperties object for
specifying connection properties.

CHAPTER 3 Troubleshooting

pause() and resume() Methods in the Capture Class

The Capture classis contained in the com.sybase.jdbcx package. It contains
two public methods:

* public void pause()
* public void resume()

Capture.pause() stops the capture of raw TDS packets into a file;
Capture.resume() restarts the capture.

The TDS capture file for an entire session can become very large. If you want
to limit the size of the capture file, and you know where in an application you
want to capture TDS data, you can do the following:

1 Immediately after you have established a connection, g€tiftere
object for the connection and use tla&se() method to stop capturing
TDS data:

Capture cap = ((SybConnecti on)conn).get Capture();
cap. pause();

2 Placecap.resume() just before the point where you want to start
capturing TDS data.

3 Placecap.pause() just after the point where you want to stop capturing
data.

99

Unsuccessful Connection Errors

Unsuccessful Connection Errors

This section addresses problemsthat may arisewhen you aretrying to establish
aconnection or start a gateway.

Gateway Connection Refused

Gat eway connection refused:
HTTP/ 1.0 502 Bad Gat eway| Restart Connection

This error message indicates that something is wrong with the hostname or
port# used to connect to your Adaptive Server. Check the [query] entry in
$SYBASE/interfaces (UNIX) or in %SYBASEY\ini\sgl.ini (Windows).

If the problem persists after you have verified the hostname and port#, you can
learn more by starting the HTTP server using the “verbose” system property.

For Windows, go to a DOS prompt and enter:
httpd -Dverbose=1 > i/ enane
For UNIX, enter:
sh httpd.sh -Dverbose=1 > fi/enane &
wherefilenameis the debug messages output file.

If you are not making a connection through the Cascade HTTP gateway, your
Web server probably does not support the connect method. Applets can connect
only to the host from which they were downloaded, unless you use the Cascade
HTTP gateway, which provides a path to the database server as a proxy.

The Cascade HTTP gateway and your Web server must run on the same host.
In this scenario, your applet can connect to the same machine/host through the
port controlled by the Cascade HTTP gateway, which routes the request to the
appropriate database.

To see how this is accomplished, review the sourd¢egbfava and
gateway.html in thesample (jConnect 4.x) osample2 (jConnect 5.x)
subdirectory under the jConnect installation directory. Search for “proxy.”

Unable to Connect to a 4.9.2 SQL Server

jConnect uses TDS 5.0 (Sybase transfer protocol). SQL Server 4.9.x uses TDS
4.6, which is not compatible with TDS 5.0.

100

CHAPTER 3 Troubleshooting

SQL Server 10.0.2 or later isrequired for use with jConnect.

101

Memory Usage in jConnect Applications

Memory Usage in jConnect Applications

The following situations and their solutions, may be helpful if you notice
increased memory use in jConnect applications.

* InjConnect applications, you should explicitly closessgakement objects
and subclasses (for exampkeepared Statement, CallableStatement)
after their last use to prevent statements from accumulating in memory.
Closing theResultSet is not sufficient.

For example:

ResultSet rs = _conn. prepareCal |l (_query). execute();
rs.close();
will cause problems. Instead use:

PreparedSt at ement ps = _conn. prepareCal | (_query);
Result Set rs = ps. execute();

ps. close();
rs.close();

e jConnect uses the Tabular Data Stream (TDS)—Sybase’s proprietary
protocol—to communicate with Sybase database servers. As of jConnect
5.0, TDS does not support scrollable cursors. To support scrollable
cursors, jConnect caches the row data on demand, on the client, on each
call toResultSet.next(). However, when the end of the result set is
reached, the entire result set is stored in the client's memory. Because this
may cause a performance strain, we recommend that you use
TYPE_SCROLL_INSENSITIVE result sets only when the result set is
reasonably small.

102

CHAPTER 3 Troubleshooting

Stored Procedure Errors

This section addresses problems that may arise when you are trying to use
jConnect and stored procedures.

RPC Returns Fewer Output Parameters Than Registered

SQLState: JZOSG - An RPC did not return as nany out put
paranmeters as the application had registered for it.

Thiserror occursif you call CallableStatement.registerOutParam() for more
parameters than you have declared as “OUTPUT” parameters in the stored
procedure. Make sure that you have declared all of the appropriate parameters
as “OUTPUT.” Look at the line of code that reads:

create procedure yourproc (@1 int OUTPUT,

Note If you receive this error while using Adaptive Server Anywhere
(previously known as SQL Anywhere), upgrade to Adaptive Server Anywhere
version 5.5.04 or later.

Fetch/State Error When Stored Procedure Returns Output Params

If a query does not return row data, then it should use the
CallableStatement.executeUpdate() or execute() methods rather than the
executeQuery() method.

As required by the JDBC standards, jConnect throws a SQL exception if an
executeQuery() has no result sets.

Stored Procedure Executed in Unchained Transaction Mode

Sybase Error 7713 - Stored Procedure can only be
executed in unchained transaction node.

JDBC attempts to put the connectiorainocommit(true) mode. The
application can change the connection to chained mode using
Connection.setAutoCommit(false) or by using dset chained on” language
command. This error occursiif the stored procedure was not created in a
compatible mode.

103

Stored Procedure Errors

Use this system procedure to fix the problem:

sp_procxmode procedure_name, 'anymode"

104

CHAPTER 3 Troubleshooting

Custom Socket Implementation Error

If you receive an exception similar to the following while trying to set up an
SSL socket when calling
sun.security.ssl.SSLSocketlmpl.setEnabledCipherSuites:

java.lang. |11 egal Argunent Excepti on:
SSL_SH anon_EXPORT W TH RC4_ 40 MDS

verify that the SSL libraries are in the system library path.

105

Custom Socket Implementation Error

106

CHAPTER 4 Performance and Tuning

This chapter describes how to fine-tune or improve performance when
working with jConnect.

The following topics are covered:

Name Page
Improving jConnect Performance 108
Performance Tuning for Prepared Statements in Dynamic SQL | 111
Cursor Performance 117

107

Improving jConnect Performance

Improving jConnect Performance

There are a number of ways to optimize the performance of an application
using jConnect. Here are some suggestions:

» Use theTextPointer.sendData() methods to send text and image data to
an Adaptive Server database. See “Sending Image Data” on page 57.

» Create precompiledreparedStatement objects for dynamic SQL
statements that are used repeatedly during a session. See “Performance
Tuning for Prepared Statements in Dynamic SQL” on page 111.

« Batch updates improve performance by reducing network traffic;
specifically, all queries are sent to the server in one group and all responses
returned to the client are sent in one group. See “Support for Batch
Updates” on page 54.

« For sessions that are likely to move image data, large row sets, and lengthy
text data, use the PACKETSIZE connection property to set the maximum
feasible packet size.

e For TDS-tunneled HTTP, set the maximum TDS packet size and configure
your Web server to support the HTTP1.1 Keep-Alive feature. Also set the
SkipDoneProc servlet argument to “true” (see vi).

* Use protocol cursors, the default setting of the LANGUAGE_CURSOR
connection property. See “LANGUAGE_CURSOR Connection Property”
on page 117 for more information.

e Ifyou use TYPE_SCROLL_INSENSITIVE result sets, only use them
when the result set is reasonably small. See “Support for
SCROLL_INSENSITIVE Result Sets in jConnect” on page 52 for more
information.

Additional considerations for improving performance are described below.

BigDecimal Rescaling

The JDBC 1.0 specification requires a scale factor gétBigDecimal().
Then, when &igDecimal object is returned from the server, it must be
rescaled using the original scale factor you used geitRigDecimal().

To eliminate the processing time required for rescaling, use the JDBC 2.0
getBigDecimal() method, which jConnect implements in $ybResultSet
class and does not requirecale value:

108

CHAPTER 4 Performance and Tuning

public BigDecimal getBigDecimal(int columnindex)
throws SQLException

For example:

SybResul tSet rs =
(SybResul t Set) st nt. execut eQuer y(" SELECT
nuneric_colum fromT1");
while (rs.next())

{
Bi gDeci mal bd rs. get Bi gDeci nal (

"nuneric_colum");

REPEAT_READ Connection Property

You canimprove performanceon retrieving aresult set from the databaseif you
set the REPEAT_READ connection property to “false.” However, when
REPEAT_READ is “false:”

¢ You must read column values in order, according to column index. This is
difficult if you want to access columns by name rather than column
number.

¢ You cannot read a column value in a row more than once.

Character-Set Conversion

If you are using multibyte character sets and need to improve driver
performance, you can use thenloConverter class provided with the
jConnect samples. This converter is based osudhéo classes provided by
the Java Software Division of Sun Microsystems, Inc.

109

Improving jConnect Performance

110

The SunloConverter classis not a pure Javaimplementation of the character-
set converter feature, and thereforeis not integrated with the standard jConnect
product. However, we have provided this converter class for your reference,
and you can useit with the jConnect driver to improve character-set conversion
performance.

Note Based on Sybase testing, the SunloConverter class improved
performance on all VMs on which it was tested. However, the Java Software
Division of Sun Microsystems, Inc. reservestheright to remove or change the
sun.io classes with future releases of the JDK, and therefore this
SunloConverter class may not be compatible with later JDK releases.

To use the SunloConverter class, you must install the jConnect sample
applications. See the Sybase jConnect for JDBC Installation Guide for
completeinstructions on installing jConnect and its components, including the
sampl e applications. Once the samples are installed, set the
CHARSET_CONVERTER_CLASS connection property to reference the
SunloConverter classin the sample (jConnect 4.x) or sample2 (jConnect 5.x)
subdirectory under your jConnect installation directory.

CHAPTER 4 Performance and Tuning

Performance Tuning for Prepared Statements in
Dynamic SQL

In Embedded SQL, dynamic statements are SQL statements that need to be
compiled at runtime, rather than statically. Typically, dynamic statements
contain input parameters, although thisis not arequirement. In SQL, the
prepare command is used to precompile a dynamic statement and save it so
that it can be executed repeatedly without being recompiled during a session.

If astatement is used multiple times in a session, precompiling it provides
better performance than sending it to the database and compiling it for each
use. The more complex the statement, the greater the performance benefit.

If astatement islikely to be used only afew times, precompiling it may be
inefficient because of the overhead involved in precompiling, saving, and later
deallocating it in the database.

Precompiling adynamic SQL statement for execution and saving it in memory
uses time and resources. If a statement is not likely to be used multiple times
during a session, the costs of doing a database prepare may outweigh its
benefits. Another consideration is that once a dynamic SQL statement is
prepared in the database, it isvery similar to astored procedure. In some cases,
it may be preferable to create stored procedures and have them reside on the
server, rather than defining prepared statements in the application. Thisis
discussed under “Choosing Between Prepared Statements and Stored
Procedures” on page 112.

You can use jConnect to optimize the performance of dynamic SQL statements
on a Sybase database as follows:

« CreatePreparedStatement objects that contain precompiled statements
in cases where a statement is likely to be executed several times in a
session.

« CreatePreparedStatement objects that contain uncompiled SQL
statements in cases where a statement will be used very few times in a
session.

As described in the following sections, the optimal way to set the
DYNAMIC_PREPARE connection property and creBteparedStatement
objects is likely to depend on whether your application needs to be portable
across JDBC drivers or whether you are writing an application that allows
jConnect-specific extensions to JDBC.

jConnect 4.1 and later provide performance tuning features for dynamic SQL
statements.

111

Performance Tuning for Prepared Statements in Dynamic SQL

Choosing Between Prepared Statements and Stored Procedures

If you create a PreparedStatement object containing a precompiled dynamic
SQL statement, once the statement is compiled in the database, it effectively
becomes a stored procedurethat isretained in memory and attached to the data
structure associated with your session. In deciding whether to maintain stored
proceduresin the database or to create Prepared Statement objects containing
compiled SQL statementsin your application, resource demands and database
and application maintenance are important considerations:

Once a stored procedure is compiled, it is globally available across all
connections. In contrast, a dynamic SQL statement in a
PreparedStatement object needs to be compiled and deallocated in every
session that uses it.

If your application accesses multiple databases, using stored procedures
means that the same stored procedures need to be available on all target
databases. This can create a database maintenance problem. If you use
PreparedStatement objects for dynamic SQL statements, you avoid this
problem.

If your application create3allableStatement objects for invoking stored
procedures, you can encapsulate SQL code and table references in the
stored procedures. You can then modify the underlying database or SQL
code without have to change the application.

Prepared Statements in Portable Applications

If your application is to run on databases from different vendors and you want
somePreparedStatement objects to contain precompiled statements and
others to contain uncompiled statements, proceed as follows:

112

When you access a Sybase database, make sure that the
DYNAMIC_PREPARE connection property is set to “true.”

To returnPreparedStatement objects containing precompiled statements,
useConnection.prepareStatement() in the standard way:

Prepar edSt at enent ps_preconp =
Connection. prepareStatenent (sq/_string);

To returnPreparedStatement objects containing uncompiled statements,
useConnection.prepareCall().

CHAPTER 4 Performance and Tuning

Connection.prepareCall() returnsaCallableStatement object, but since
CallableStatement is a subclass of PreparedStatement, you can upcast
aCallableStatement object to a PreparedStatement object, asin the
following example:

Prepar edSt at enent ps_unconp =
Connection. prepareCal |l (sql_string);

The PreparedStatement object ps_uncomp is guaranteed to contain an
uncompiled statement, since only Connection.prepareStatement() is
implemented to return Prepared Statement objects containing
precompiled statements.

Prepared Statements in Applications with jConnect Extensions

If you are not concerned about portability across drivers, you can write code
that uses SybConnection.prepareStatement() to specify whether a
PreparedStatement object contains precompiled or uncompiled statements.
In this case, how you code prepared statementsis likely to depend on whether
most of the dynamic statementsin an application are likely to be executed
many times or only afew times during a session.

If Most Dynamic Statements Are Executed Very Few Times

For an application in which most dynamic SQL statements are likely to be
executed only once or twicein a session:

e Set the connection property DYNAMIC_PREPARE to “false.”

« ToreturnPreparedStatement objects containing uncompiled statements,
useConnection.prepareStatement() in the standard way:

Prepar edSt at enent ps_unconp =
Connecti on. prepareStatenment (sql _string);

* ToreturnPreparedStatement objects containing precompiled statements,
useSybConnection.prepareStatement() with dynamic set to “true:”

Prepar edSt at ement ps_preconp =
(SybConnecti on) conn. prepar eSt at enent (sq/ _string, true);

If Most Dynamic Statements Are Executed Many Times in a Session

If most of the dynamic statements in an application are likely to be executed
many times in the course of a session, proceed as follows:

113

Performance Tuning for Prepared Statements in Dynamic SQL

e Set the connection property DYNAMIC PREPARE to “true.”

e ToreturnPreparedStatement objects containing precompiled statements,
useConnection.prepareStatement() in the standard way:

Prepar edSt at enent ps_preconp =
Connecti on. prepareStatenent (sq/_string);

e ToreturnPreparedStatement objects containing uncompiled statements,
you can use eith&onnection.prepareCall() (see the third bullet under
Prepared Statements in Portable Applications) or
SybConnection.prepareStatement(), with dynamic set to “false:”

Prepar edSt at enent ps_unconp =
(SybConnecti on) conn. prepareSt at enent (sq/ _string, false);

Prepar edSt at enent ps_unconp =
Connection. prepareCal | (sql_string);

Connection.prepareStatement()

jConnect implementSonnection.prepareStatement() SO you can set it to

return either precompiled SQL statements or uncompiled SQL statements in
PreparedStatement objects. If you seConnection.prepareStatement() to

return precompiled SQL statement$ireparedStatement objects, it sends
dynamic SQL statements to the database to be precompiled and saved exactly
as they would be under direct execution ofghgpare command. If you set
Connection.prepareStatement() to return uncompiled SQL statements, it
returns them ifPreparedStatement objects without sending them to the
database.

The type of SQL statement thadnnection.prepareStatement() returns is
determined by the connection property DYNAMIC_PREPARE, and applies
throughout a session.

For Sybase-specific applications, jConnect 5.0 proviges@areStatement(

) method under the jConnegybConnection class.
SybConnection.prepareStatement() allows you to specify whether an
individual dynamic SQL statement is to be precompiled, independent of the
session-level setting of the DYNAMIC_PREPARE connection property.

114

CHAPTER 4 Performance and Tuning

DYNAMIC_PREPARE Connection Property

DYNAMIC_PREPARE is aBoolean-valued connection property for enabling
dynamic SQL prepared statements:

If DYNAMIC_PREPARE is set to “true,” every invocation of
Connection.prepareStatement() during a session attempts to return a
precompiled statement inPaeparedStatement object.

In this case, when RreparedStatement is executed, the statement it
contains is already precompiled in the database, with place holders for
dynamically assigned values, and the statement needs only to be executed

If DYNAMIC_PREPARE is set to “falsefor a connection, the
PreparedStatement object returned bZonnection.prepareStatement(
) does not contain a precompiled statement.

In this case, each timePaeparedStatement is executed, the dynamic
SQL statement it contains must be sent to the database to be both compiled
and executed.

The default value for DYNAMIC_PREPARE is “false.”

In the following example, DYNAMIC_PREPARE is set to “true’enable
precompilation of dynamic SQL statements. In the exanpptas is a
Properties object for specifying connection properties.

props. put ("DYNAM C_PREPARE", "true")
Connection conn = Driver Manager. get Connection(ur/, props);

When DYNAMIC PREPARE is set to “true,” note that:

Not all dynamic statements can be precompiled undgrrtipare
command. The SQL-92 standard places some restrictions on the
statements that can be used withghspare command, and individual
database vendors may have their own constraints.

If the database generates an error because it is unable to precompile and
save a statement sent to it throu@yinnection.prepareStatement(),

jConnect traps the error and returr®raparedStatement object

containing an uncompiled dynamic SQL statement. Each time the
PreparedStatement object is executed, the statement is re-sent to the
database to be compiled and executed.

A precompiled statement resides in memory in the database and persists
either to the end of a session or untiFtsparedStatement object is

explicitly closed. Garbage collection oPeepared Statement object

does not remove the prepared statement from the database.

115

Performance Tuning for Prepared Statements in Dynamic SQL

Asageneral rule, you should explicitly close every PreparedStatement
object after itslast use to prevent prepared statements from accumulating
in server memory during a session and slowing performance.

SybConnection.prepareStatement()

If your application allows jConnect-specific extensions to JDBC, you can use
theSybConnection.prepareStatement() extension method to return dynamic
SQL statementsin Prepared Statement objects:

Prepar edSt at ement SybConnecti on. prepareSt atenent (String sql _stnt,
bool ean dynami c) throws SQLException

SybConnection.prepareStatement() can return Prepared Statement objects
containing either precompiled or uncompiled SQL statements, depending on
the setting of the dynamic parameter. If dynamic is “true,”
SybConnection.prepareStatement() returns éreparedStatement object
with a precompiled SQL statementdifnamic is “false,” it returns a
PreparedStatement object with an uncompiled SQL statement.

The following example shows the use of
SybConnection.prepareStatement() to return &PreparedStatement object
containing a precompiled statement:

Prepar edSt at emrent preconp_stmt =
((SybConnecti on) conn). prepareStatenent("SELECT * FROM
aut hors WHERE au_fnane LIKE ?", true);

In the example, the connection objectn is downcast to 8ybConnection
object to allow the use &ybConnection.prepareStatement(). Note that the
SQL string passed t®ybConnection.prepareStatement() will be
precompiled in the database, even if the connection property
DYNAMIC_PREPARE is “false.”

If the database generates an error because it is unable to precompile a statement
sent to it througlsybConnection.prepareStatement(), jConnect throws a
SQLException and the call fails to returnRrepared Statement object. This

is unlikeConnection.prepareStatement(), which traps SQL errors and, in the

event of an error, returnsPaeparedStatement object containing an

uncompiled statement.

116

CHAPTER 4 Performance and Tuning

Cursor Performance

When you use the Statement.setCursorName() method or the
setFetchSize() method in the SybCursorResultSet class, jConnect creates a
cursor in the database. Other methods cause jConnect to open, fetch, and
update a cursor.

Versions of jConnect earlier than version 4.0 can create and mani pul ate cursors
only by sending SQL statementswith explicit cursor commandsto the database
for parsing and compil ation.

jConnect version 4.0 and later create and manipul ate cursors either by sending
SQL statements to the database or by encoding cursor commands as tokens
within the Tabular Data Stream (TDS) communication protocol. Cursors of the
first type are “language cursors;” cursors of the second type are “protocol
cursors.”

Protocol cursors provide better performance than language cursors. In
addition, not all databases support language cursors. For example, Adaptive
Server Anywhere databases do not support language cursors.

In jConnect, the default condition is for all cursors to be protocol cursors.
However, the LANGUAGE_CURSOR connection property gives you the
option of having cursors created and manipulated through language commands
in the database.

LANGUAGE_CURSOR Connection Property

LANGUAGE_CURSOR is a Boolean-valued connection property in jConnect
that allows you to determine whether cursors are created as protocol cursors or
language cursors:

* If LANGUAGE_CURSOR is set to “false,” all cursors created during a
session are protocol cursors, which provide better performance. jConnect
creates and manipulates the cursors by sending cursor commands as
tokens in the TDS protocol.

By default, LANGUAGE_CURSOR is set to “false.”

* If LANGUAGE_CURSOR is set to “true,” all cursors created during a
session are language cursors. jConnect creates and manipulates the cursor
by sending SQL statements to the database for parsing and compilation.

117

Cursor Performance

There is no known advantage to setting LANGUAGE_CURSOR to “true,”
but the option is provided in case an application displays unexpected
behavior when LANGUAGE_CURSOR is “false.”

118

CHAPTER 5 Migrating JConnect Applications

This chapter explains how to migrate applications that use Sybase
extensions from jConnect version 4.0 or earlier to use jConnect versions

4.1 and later.

The following topics are covered:
Name Page
Migrating Applications to jConnect 4.1 120
Migrating Applications to jConnect 5.x 120
Migrating Applications to jConnect 4.2 and 5.2 120
Sybase Extension Changes 123

119

Migrating jConnect Applications

Migrating jConnect Applications

Migrating Applications to jConnect 4.1

jConnect 4.1 is backward compatible with previous versions of jConnect. All
existing applications should continue to work without recompiling.

When you develop new applications that use Sybase extensions, use the
interfaces located in com.sybase.jdbcx.

Thiscommon interface allowsyou to upgrade applicationsto jConnect version
4.1 and later with minimal changes. See “Sybase Extension Changes” on page
123 for changes made in the Sybase extensions.

Migrating Applications to jConnect 5.x

The package and class for the Sybase jConnect 5.x driver is
com.sybase.jdbc2.jdbc.SybDriver. This is different from previous versions of
jConnect. Applications need to change their source code where they load
SybDriver and recompile with the Java™ 2 Platform.

Here is an example of loading the driver in jConnect 5.0:

Driver d =
(Driver)d ass. forName("com sybase. jdbc2.jdbc. SybDriver"). new nstance();
Driver Manager.regi sterDriver(d);

If your applications use Sybase extensions to the JDBC API, change your
imports from usingom.sybase.jdbc and/orcom.sybase.utils to
com.sybase.jdbcx. See “Sybase Extension Changes” on page 123 for changes
made to the Sybase extensions.

See the samples provided with jConnect for more examples of how to use
Sybase extensions.

Migrating Applications to jConnect 4.2 and 5.2

If you upgrade to jConnect 4.2 or 5.2 from previous versions, the following
table shows which upgrade paths require you to make changes and recompile
the source code.

Legend:

120

CHAPTER 5 Migrating jConnect Applications

A Recommend changing to the com.sybase.jdbcx package
B Change CLASSPATH for new installation structure

C Recompileto use new jConnect 5.x driver

See below for additional details.

Upgrading From To jConnect Version

jConnect Version 41 42 5.0 5.2
4.0 & earlier A AB AC ABC
4.1 - AB AC ABC
4.2 - - not a AC
supported
path
5.0 - - - B

A. Use the new Sybase extensions.
1 Change package imports from

i mport com sybase.jdbc. *
to
i mport com sybase. j dbcx. *;

2 Use new Sybase extentions APIs. See “Sybase Extension Changes” on
page 123.

B. Change CLASSPATH for newJDBC_HOME installation structure.

Set JDBC_HOME to the top directory of the jConnect driver you installed.
For example:

e ForjConnect 4.2:
JDBC_HOVE=j Connect-4_2
e For jConnect 5.0:
JDBC_HOMVE=<j Connect installation directory>

For more information on setting JDBC_HOME, see “Setting Environment
Variables” in Chapter 1 of th€onnect for JDBC Installation Guide.

Version Change CLASSPATH Includes
From 4.1 JDBC_HOME/classes

To 5.2 JDBC_HOME/jconn2.jar
From 4.1 JDBC_HOME/classes

121

Migrating jConnect Applications

Version Change CLASSPATH Includes
To 42 JDBC_HOME/classes
From 5.0 JDBC_HOME/classes/jconn2.jar
To 5.2 JDBC_HOME/classes/jconn2.jar

0 C.Recompile to use new jConnect 5.x driver
e Change the source code where the driver is loaded from:

Cl ass. for Name(" com sybase. j dbc. SybDri ver");
to

Cl ass. for Nanme("com sybase. j dbc2. j dbc. SybDriver");

122

CHAPTER 5 Migrating jConnect Applications

Sybase Extension Changes

A new package, com.sybase.jdbcx, has been added to jConnect versions 4.1,
4.2, and 5.x that contains al of the Sybase extensionsto JDBC. In previous
versions of jConnect, these extensions were availablein thecom.sybase.jdbc
and com.sybase.utils packages.

com.sybase.jdbcx provides a consistent interface across different versions of
jConnect. All of the Sybase extensions are defined as Java interfaces, which
allows the underlying implementations to change without affecting
applications built using these interfaces.

When you develop new applications that use Sybase extensions, use
com.sybase.jdbcx. Theinterfacesin this package allow you to upgrade
applications to versions of jConnect that follow version 4.0 with minimal
changes.

Note Applications previously built using the Sybase extensions to the JDBC
API, which were availablein com.sybase.jdbc and com.sybase.utils, will
continue to work under jConnect 4.x; however, all Sybase extensionsin
com.sybase.jdbc and com.sybase.utils have been marked deprecated.

Some of the Sybase extensions have been changed to accommodate the new
com.sybase.jdbcx interface.

Change Example
If an application usesthe SybMessageHandler, the codedifferenceswould be:
e jConnect 4.0 code:

i mport com sybase. j dbc. SybConnecti on;
i mport com sybase. j dbc. SybMessageHand! er;

Connection con = DriverMnager. get Connection(url, props);
SybConnecti on sybCon = (SybConnection) con;
sybCon. set MessageHandl er (new Connecti onMsgHandl er());

e jConnect 4.1 and later code:

i mport com sybase. j dbcx. SybConnecti on;
i mport com sybase. j dbcx. SybMessageHandl er;

123

Sybase Extension Changes

Connection con = DriverManager. get Connection(url, props);
SybConnecti on sybCon = (SybConnection) con;
sybCon. set SybMessageHand! er (new Connecti onMsgHandl er ());

See the samples provided with jConnect for more examples of how to use
Sybase extensions.

Changed Method Names

Thefollowing table lists how methods have been renamed in the new interface.

Class Old Name New Name
SybConnection getCapture() createCapture()
SybConnection setMessageHandler() setSybMessageHandler()
SybConnection getMessageHandler() getSybMessageHandler()
SybStatement setMessageHandler() setSybMessageHandler()
SybStatement getMessageHandler() getSybMessageHandler()

Debug Class

Direct static referencesto the Debug classare no longer supported, but exist in
deprecated forminthecom.sybase.utils package. To usejConnect debugging
facilities, use the getDebug() method of the SybDriver classto obtain a
reference to the Debug class. For example:

i nport com sybase. j dbcx. SybDri ver;
i nport com sybase. j dbcx. Debug;

SybDriver sybDriver =

SybDriver) d ass. f or Nane

("com sybase. j dbc2. jdbc. SybDriver") new nstance();
Debug sybDebug = sybDri ver. get Debug();
sybDebug. debug(true, "ALL", System out);

A completelist of Sybase extensionsisin the jConnect javadoc documentation
located in the docs/ directory of your jConnect installation directory.

124

CHAPTER 6 Web Server Gateways

Thischapter describesWeb server gateways and explains how to usethem
with jConnect.

The chapter is divided into these sections:

Name Page
About Web Server Gateways 126
Using the Cascade Gateway 131
Using the TDS-Tunnelling Servlet 136

125

About Web Server Gateways

About Web Server Gateways

TDS Tunnelling

126

If your database server runs on a different host than your Web server, or if you
are devel oping Internet applications that must connect to a secure database
server through afirewall, you need agateway to act asaproxy, providing apath
to the database server.

To connect to serversusing the Secure Sockets L ayer (SSL) protocol, jConnect
provides aJava servlet that you can install on any Web server that supportsthe
javax.servlet interfaces. This servlet enables jConnect to support encryption
using the Web server as the gateway.

Note jConnect includes support for SSL on the client system. For information
on jConnect’s client-side support of SSL, see “Implementing Custom Socket
Plug-Ins” on page 26.

jConnect includes a Cascade gateway, a slightly modified version of the
Cascade Web server. The Cascade gateway supports the CONNECT HTTP
method, which allows HTTP-tunnelling of Tabular Data Stream (TDS) data.

You can use the Cascade gateway to connect to a database server that runs on
a different host than the Web server, but that does not need to pass through a
firewall. See “Using the Cascade Gateway” on page 131.

jConnect uses TDS to communicate with database servers. HTTP-tunnelled
TDS is useful for forwarding requests. Requests from a client to a back-end
server that go through the gateway contain TDS in the body of the request. The
request header indicates the length of the TDS included in the request packet.

TDS is a connection-oriented protocol, whereas HTTP is not. To support
security features such as encryption for Internet applications, jConnect uses a
TDS-tunnelling servlet to maintain a logical connection across HTTP requests.
The servlet generates a session ID during the initial login request, and the
session ID is included in the header of every subsequent request. Using session
IDs lets you identify active sessions, and even resume a session as long as the
servlet has an open connection using that specific session ID.

CHAPTER 6 Web Server Gateways

Thelogical connection provided by the TDS-tunnelling servlet enables

jConnect to support encrypted communication between two systems—for
example, a jConnect client with the CONNECT_PROTOCOL connection
property set to “https” connecting to a Web server running the TDS-tunnelling
servlet.

jConnect and Gateway Configuration

There are several options for setting up your Web servers and Adaptive Servers.
Four common configurations are described below. These examples show where
to install the jConnect driver and when to use the Cascade gateway or a
gateway with the TDS-tunnelling servlet.

Web Server and Adaptive Server on One Host

In this two-tier configuration, the Web server and Adaptive Server are both
installed on the same host.

¢ Install jConnect on the Web server host.

* No gateway required.

Client Host
Browser
URL
|
Downloaded
applets and - Download Web Server
JC;’.‘"e“ applets and
river jConnect
applets and
jConnect
TDS 5.0 ‘

Adaptive
Server

Dedicated JDBC Web Server and Adaptive Server on One Host

With this configuration, you have a separate host for your main Web server. A
second host is shared by a Web server specifically for Adaptive Server access
and the Adaptive Server. Links from the main server direct requests requiring
SQL access to the dedicated Web server.

127

About Web Server Gateways

< Install jConnect on the second (Adaptive Server) host.

* No gateway required.

Client Host A
Browser
URL
Downloaded
applets and «
jConnect
driver non-SQL
applets
URL
Host B
Download
applets and
jConnect
TDS 5.0 Web Server
applets and
jConnect

Web Server and Adaptive Server on Separate Hosts

In this three-tier configuration, the Adaptive Server is on a separate host from
the Web server. jConnect requires a gateway to act as a proxy to the Adaptive
Server.

e Install jConnect on the Web server host.

128

CHAPTER 6 Web Server Gateways

¢ Requires either a TDS-tunnelling servlet or the Cascade gateway.

Client Host A
Browser
URL
Downloaded
applets and |
iConnect Download
driver /. applets and applets and

jConnect

jConnect
HTTP
tunneled

TDs Cascade

) Gateway

TDS 5.0

Connecting to a Server Through a Firewall

To connect to a server protected by a firewall, you must use a Web server with
the TDS-tunnelling servlet to support transmission of database request
responses over the Internet.

¢ Install jConnect on the Web server host.

129

About Web Server Gateways

130

Requires a Web server that supportsjghiax.servlet interfaces.

I
Client | Host A
Browser | URL
| Download
Downloaded applets and
applets and | jConnect
jC t
: 4;?rri1vneerC | Web Server
- B Supporting
| HTTP/HTTPS javax.servlet
| tunneled »
TDS
|
| applets and
jConnect
|
| Host B
| TDS 5.0
|
Firewall |

Adaptive

Server

CHAPTER 6 Web Server Gateways

Using the Cascade Gateway

If your database server runs on a different host than the Web server, even if
thereis no firewall, you need a gateway to act as a proxy, providing a path to
the database server.

The jConnect installation includes a Cascade gateway, a slightly modified
version of the Cascade Web server written in Java by David Wilkerson (email:
davidw@cascade.org.uk; Web site: http://www.cascade.org.uk/).

The Cascade gateway receives and forwards packets, switching fromHTTPto
TDS when sending arequest to the Adaptive Server, and from TDStoHTTP
when returning results.

Note The Cascade gateway does not support encryption, and therefore is not
suitable for Internet applications that connect to a back-end server through a
firewall.

Usage Requirements ¢ If you did not install jConnect in the default installation directory, you
must editwww.dos (DOS) ormwww.template (UNIX) and change all default
installation directory references to point to the literal path where you
installed jConnect.

e The Cascade gateway and your Web server must run on the same host
machine. This way, applets connect to the same host as the Web server, but
to the port controlled by the Cascade gateway. The gateway routes the
request to the appropriate database. To see how this is accomplished,
review the code iisgl.java andgateway.html in thesample (jConnect 4.x)
or sample? (jConnect 5.x) subdirectoiyf the jConnect installation
directory. Search for “proxy.”

If your database server runs on the same host as your Web server, you do not
need the Cascade gateway.

Installing the Cascade Gateway

The Cascade gateway is installed when you perform a full jConnect
installation, either using the jConnect installer, or usingrittall.bat or
install.sh files. You can also use the jConnect installer to install only the
Cascade gateway files, if necessary. Se&ghase JConnect for JDBC
Installation Guide and Release Bulletin.

131

Using the Cascade Gateway

Starting the Cascade Gateway
Follow the platform-specific instructions below to test the Cascade gateway.

Windows NT and Windows 95
1 AtaDOS prompt, change to the jConnect installation directory.
Your IDBC_HOME environment variable should be set to this directory.
2 Start the Cascade gateway by entering:
htt pd

If the command executes successfully, you see output from httpd.bat,
ending with:

HTTPDSer ver www. dos

UNIX

Change to the directory where you installed jConnect (the JDBC_HOME
directory). Type the following command:

sh httpd.sh &

Troubleshooting

< If you do not see a message after you enterttipe command, the server
is not running. Retry the command in verbose mode.

For Windows, go to a DOS prompt and enter:
httpd -Dverbose=1 > i/ enane
For UNIX, enter:
sh httpd.sh -Dverbose=1 > fi/enane &
In these command§)ename is the output file for debug messages.
« If you receive this error message:

HTTPServer: | CException: getRequest() Address
already in use

it means another process is running on the port specified imthelos
(DOS) orwww.template (UNIX) file, located in JDBC_HOME. This error
occurs when you start the gateway.

132

CHAPTER 6 Web Server Gateways

You can:

e Stop the process that is currently running on the specified port. After
verifying that the process has terminated, try starting the gateway;

or

e Change the port number in thew.dos or www.template file, then
modify thegateway.html file, located in thesample (jConnect 4.x) or
sample2 (jConnect 5.x) subdirectory of JDBC_HOME, by changing
the proxy parameter to “localhostew_port.”

If your host is not “localhost” (that is, your Cascade HTTP server and
browser are on different hosts), make sure thapthe/ parameter
uses the remote host name rather than “localhost.”

Testing the Cascade Gateway

Troubleshooting

To check your setup and test the Cascade gateway, you can run a validation
program that connects to the Sybase demonstration database.

Note The Validate program uses “localhost:8000” to test your gateway.

From the DOS prompt for Windows NT or Windows 95, or at a UNIX prompt,
change to the JDBC_HOME directory.

For jConnect 4.x, type

java sanpl e. SybSanpl e Val i date
For jConnect 5.x, type

java sanpl e2. SybSanpl e Val i dat e

If the validation is successful, you see the jConnect version number and the
message “Connected successfully” in the Sample output window.

If you receive a “Bad command or file name” error (Windows 95) or a “Name
specified is not recognized as an internal or external command” error
(Windows NT), make sure that your path includes\tiresubdirectory of the
JDK home directory.

133

Using the Cascade Gateway

Reading the index.html File

Use your Web browser to view the index.html filein your jConnect installation
directory. index.html provideslinksto the jConnect documentation and sample
code.

Troubleshooting

Note If you use Netscape on the same machine where you have installed
jConnect, make sure that your browser does not have access to your
CLASSPATH environment variable. See “Restrictions on Setting
CLASSPATH When You Use Netscape” in Chapter 3 ofSimse j Connect
for JDBC Installation Guide and Release Bulletin.

Open your Web browser.

Enter the URL that matches your setup. For example, if your browser and
the Cascade gateway are running on the same host, enter:

http://1ocal host: 8000/i ndex. ht m

If the browser and the Cascade gateway are running on different hosts,
enter:

http:// host: portlindex. htm

wherehost is the name of the host on which the Cascade gateway is
running, andort is the listening port.

If you entered the correct host, port, and file information, but the browser
cannot open this link, the Cascade gateway is not running. See “Starting the
Cascade Gateway” on page 132.

Running the Sample Isqgl Applet

After loading thendex.html file in your browser:

134

1

Click “Run Sample JDBC Applets.”
This takes you to the jConnect Sample Programs page.

Move down the Sample Programs page to find the table under “Executable
Samples.”

Locate “Isqgl.java” in the table and click on “Run” at the end of the row.

CHAPTER 6 Web Server Gateways

Troubleshooting

The sample Isql.java applet prompts for a simple query on a sample database
and displays the results. The applet displays a default Adaptive Server host
name, port number, user name (guest), password (sybase), database, and query.
Using the default values, the applet connects to the Sybase demonstration
database. It returns results after you click Go.

Under UNIX, if the applet does not appear as expected, you can modify the
applet screen dimensions:

1 Useatext editor to edit the following:
For jConnect 4.x
$IDBC_HOME/sample/gateway.html
For jConnect 5.x
$IDBC_HOME/sample2/gateway.html

2 Changethe height parameter in line 7 to 650. You can experiment with
different height settings.

3 Reload the Web page on your browser.

Defining a Connection to the Cascade Gateway

To define a connection in your application that uses the Cascade gateway, put
the name of the host on which the Cascade gateway is running in the URL :

host:port

where host is the name of the host on which the Cascade gateway is running,
and port isthe listening port.

135

Using the TDS-Tunnelling Serviet

Using the TDS-Tunnelling Servlet

136

In order to use the TDS-tunnelling servlet, you need aWeb server that supports

the javax.servlet interfaces, such as Sun Microsystems, Inc.’s Java™ Web
server. When you install the Web server, include the jConnect TDS-tunnelling
servletin the list of active servlets. You can also set servlet parameters to define
connection timeouts and maximum packet size.

With the TDS-tunnelling servlet, requests from a client to the back-end server
that go through the gateway include a GET or POST command, the TDS
session ID (after the initial request), back-end address, and status of the
request.

TDS is in the body of the request. Two header fields indicate the length of the
TDS stream and the session ID assigned by the gateway.

When the client sends a request, the Content-Length header field indicates the
size of the TDS content, and the request command is POST. If there is no TDS
data in the request because the client is either retrieving the next portion of the
response data from the server, or closing the connection, the request command
is GET.

The following example illustrates how information is passed between the client
and an HTTPS gateway using the TDS-tunneled HTTPS protocol. This
example shows a connection to a back-end server named DBSERVER with a
port number “1234.”

Table 6-1: Client to gateway login request. No session ID.

Query POST/tds?ServerHost=dbserver& ServerPort=1234&
Operation=more HTTP/1.0

Header Content-Length: 605

Content Login request
(TDS)

Table 6-2: Gateway to client. Header contains session ID
assigned by the TDS servlet.

Query 200 SUCCESS HTTP/L0

Header Content-Length: 210
TDS-Session: TDS00245817298274292

Content Login acknowledgment
(TDS) EED

CHAPTER 6 Web Server Gateways

Table 6-3: Client to gateway. Headers for all subsequent requests
contain the session ID.

Query POST/tds?TDS-
Session=TDS00245817298274292& Operation=more HTTP/1.0

Header Content-Length: 32

Content Query “SELECT * from authors”
(TDS)

Table 6-4: Gateway to client. Headers for all subsequent responses
contain the session ID.

Query 200 SUCCESS HTTP/1.0

Header Content-Length: 2048
TDS-Session: TDS00245817298274292

Content Row format and some rows from query response
(TDS)

TDS-tunnelling Servlet System Requirements
To use the jConnect servlet for TDS-tunneled HTTR, you need:

A Web server that suppoftssax.servlet interfaces. To install the server,
follow the instructions that are provided with it.

A Web browser that supports JDK 1.1, such as Netscape 4.0, Internet
Explorer 4.0, or HotJava.

Installing the Servlet

Your jConnect installation includesgateway subdirectory (jConnect 4.x) or
gateway?2 subdirectory (jConnect 5.x) under ttiesses directory. The
subdirectory contains files required for the TDS-tunnelling servlet.

Copy the jConnedateway package to gateway subdirectory (jConnect 4.x)

or gateway? subdirectory (jConnect 5.x) under your Web server’s servlets
directory. Once you have copied the servlets, activate the servlets by following
the instructions for your Web server.

Setting Servlet Arguments

When you add the servlet to your Web server, you can enter optional arguments
to customize performance:

137

Using the TDS-Tunnelling Serviet

e SkipDoneProc [true|false] Sybase databases often return row count
information as intermediate processing steps are performed during the
execution of aquery. Usually client applications ignore this data. By
setting SkipDoneProdo “true,” the servlet will remove this extra
information from responses “on the fly,” which reduces network usage and
processing requirements on the client. This is particularly useful when
using HTTPS/SSL because the unwanted data does not get
encrypted/decrypted before it is ignored.

e TdsResponseSizeSet the maximum TDS packet size for the tunneled
HTTPS. A larger TdsResponseSimmore efficient if you have only afew
users with alarge volume of data. Use a smaller TdsResponseSideyou
have many users making smaller transactions.

e TdsSessionldleTimeouDefine the amount of time (in milliseconds) that
the server connection can remain idle before the connection is
automatically closed. The default TdsSessionldle Timeoist600,000 (10
minutes).

If you haveinteractive client programsthat may beidlefor long periods of
time and you don’t want the connections broken, increase the
TdsSessionldleTimeout.

You can also set the connection timeout value from the jConnect client
using the SESSION_TIMEOUT connection property. This is useful if you
have specific applications that may be idle for longer periods. In this case,
set a longer timeout for those connections with the SESSION_TIMEOUT
connection property, rather than setting it for the servlet.

e Debug -Turn on debugging. See “Debugging with jConnect” on page 94.
Enter the servlet arguments in a comma-delimited string. For example:
TdsResponseSi ze=[si ze] , TdsSessi onl dl eTi meout =[ti neout], Debug=t r ue

Refer to your Web server documentation for complete instructions on entering
servlet arguments.

Invoking the Servlet

jConnect determines when to use the gateway where the TDS-tunnelling
servlet is installed based on the path extension gfitiie connection
property. jConnect recognizes the servlet path extension todkeand
invokes the servlet on the designated gateway.

Define the connection URL using this format:

138

CHAPTER 6 Web Server Gateways

http:// host: port/ TDS-servl et - pat h

jConnect invokes the TDS-tunnelling servlet on the Web server to tunnel TDS
through HTTP. The servlet path must be the path you defined in your Web
server’s servlet alias list.

Tracking Active TDS Sessions

You can view information about active TDS sessions, including the server
connections for each session. Use your Web browser to open the administrative
URL:

http:// host: portl TDS-ser vl et - pat h?Qper ati on=li st

For example, if your server is MYSERVER and the TDS servlet péttisjs
you would enter;

http://myserver: 8080/ tds?Operation=list

This shows you a list of active TDS sessions. You can click on a session to see
more information, including the server connection.

Terminating TDS Sessions

You can use the URL described above to terminate any active TDS session.
Click on an active session from the list of sessions on the first page, then click
Terminate This Session.

Resuming a TDS Session

You can set the SESSION_ID connection property so that, if necessary, you
can resume an existing open connection. When you specify a SESSION_ID,
jConnect skips the login phase of the protocol and resumes the connection with
the gateway using the designated session ID. If the session ID you specified
does not exist on the servlet, jConnect throws a SQL exception the first time
you attempt to use the connection.

139

Using the TDS-Tunnelling Serviet

TDS Tunnelling and Netscape Enterprise Server 3.5.1 on Solaris

Netscape Enterprise Server 3.5.1 does not support the
javax.servlet.ServletConfig.getinitParameters() or
javax.servlet.ServletConfig.getinitParameterNames() methods. To provide
the necessary parameter values, you need to replace callsto getinitParameter(
) and getinitParameterNames() with hard-coded parameter valuesin
TDSTunnel Serviet.java.

To enter the required parameter valuesin TDSTunnel Serviet.java and use TDS
tunnelling with Netscape Enterprise Server 3.5.1 on Solaris:

1 Hard code parameter valuesin TDSTunnel Serviet.java.
2 Create .classfiles from the class declarations in TDSTunnel Serviet.java.
This should result in the following files:
e TDSTunnel Servet.class
e TdsSession.class
e TdsSessionManager.class

3 Create a directory for thelass files under your Netscape Enterprise
Server 3.5.1 (NSE_3.5.1) installation directory, as follows:

nkdir NSE 3.5.1 install_dirl/plugins/javalservlets/gateway

4 Copy theclassfiles derived fromDSTunnel Serviet.java to the directory
you just created.

5 Copy the classes und&iDBC_ HOME/classes/com/sybase to
NSE_3.5.1 install_dir/docs/com/sybase.

An easy way to do this is to recursively copy everything under
$IDBC_HOME/classesto NSE_3.5.1 install dir/docs, as:

cp -r $IJDBC HOVE/ cl asses NSE 3. 5.1 install_dirldocs

This copies a number of files and directories that are not under
$IDBC_HOME/classes/convVsybase. The extra files and directories are
harmless, but take up disk space. You can delete them to reclaim the disk
space.

6 Set theroxy URL to the TDS-tunnelling servlet.

For example, iI$JDBC_HOME/sample/gateway.html, you would edit the
proxy parameter to appear as follows:

<param name=proxy value="http:// host nanelservlet/
gat enay nane.TDSTunnel_Servlet_name”>

140

apprenpix oA SQL Exception and Warning

Messages

The following table lists the SQL exception and warning messages that
you may encounter when using jConnect.

SQLState

Message/Description/Action

010DP

Duplicate connection property __ ignored.

Description: A connection property is defined twice. It may be defined twice in the

driver connection properties list with different capitalization, for example “password”
and “PASSWORD.” Connection property names are not case-sensitive, and therefore
jConnect does not distinguish between property names with the same name but
different capitalization.

The connection property may also be defined both in the connection properties list, and
in the URL. In this case, the property value in the connection property list takes
precedence.

Action: Make sure your application defines the connection property only once.
However, you may want you application to take advantage of the precedence of
connection properties defined in the property list over those defined in the URL. In this
case, you can safely ignore this warning.

010HA

The server deni ed your request to use the high-availability feature.
Pl ease reconfigure your database, or do not request a high-
avail ability session.

Description: The REQUEST_HA_SESSION connection property was not set to
“true,” and the server to which jConnect attempted a connection did not allow the
connection.

Action: Reconfigure the server to support high-availability Failover or do not set
REQUEST_HA_SESSION to “true.”

010HD

Sybase high-availability failover is not supported by this type of
dat abase server.

Description: The database to which jConnect attempted a connection does not support
high-availability Failover.

Action: Connect only to database servers that support high-availability Failover.

141

SQLState

Message/Description/Action

01I0MX

Met adat a accessor informati on was not found on this database. Pl ease
install the required tables as nentioned in the jConnect
docunentation. Error encountered while attenpting to retrieve

net adata i nformation:

Description: The server may not have the necessary stored procedures for returning
metadata information.

Action: Make sure that stored procedures for providing metadata are installed on the
server. See “Installing Stored Procedures” in Chapter 3 ¢Cth@ect for JDBC
Installation Guide.

010P4

An out put paraneter was received and ignored.

Description: The query you executed returned an output parameter but the application
result-processing code did not fetch it so it was ignored.

Action: If your application needs the output parameter data, you must rewrite the
application so it can get it. This may require usir@ableStatement to execute the
query, and adding calls tegisterOutputParameter() andgetXxX().

010PF

One or nore jars specified in the PRELOAD JARS connection property
coul d not be | oaded.

Description: This happens when using thgnamicClassLoader with the

PRELOAD_JARS connection property set to a comma-delimited list of JAR names.
When thebynamicClassLoader 0pens its connection to the server from which the classes
are to be loaded, it attempts to “preload” all the JARs mentioned in this connection

property. If one or more of the JAR names specified doesn't exist on the server, the
above error message results.

Action: Verify that every JAR file mentioned in your application's PRELOAD_JARS
connection property exists and is accessible on the server.

010RC

142

The requested ResultSet type and concurrency is not supported. They
have been converted.

Description: You requested a type and concurrency combination for the ResultSet that
is not supported. The requested values had to be converted.

Action: Request a type and concurrency combination for the ResultSet that is
supported.

APPENDIX A SQL Exception and Warning Messages

SQLState Message/Description/Action

010SJ Met adat a accessor infornation was not found on this database. Please
install the required tables as nentioned in the jConnect
docunent ati on.
Description: The metadata information is not configured on the server.
Action: If your application requires metadata, install the stored proceduresfor returning
metadata that come with jConnect (see “Installing Stored Procedures” in Chapter 3 of
thejConnect for JDBC Installation Guide). If you do not need metadata, set the
USE_METADATA property to “false.”

010SK Dat abase cannot set connection option __
Description: Your application attempted an operation that the database you are
connected to does not support.
Action: You may need to upgrade your database or make sure that the latest version of
metadata information is installed on it.

0I0SN Permission to wite to file was denied. File: . Error message:
Description: Permission to write to a file specified in the PROTOCOL_CAPTURE
connection property is denied because of a security violation in the VM. This can occur
if an applet attempts to write to the specified file.
Action: If you are attempting to write to the file from an applet, make sure that the
applet has access to the target file system.

010SP File could not be opened for witing. File: ___ . Error nessage:
Action: Make sure that the file name is correct and that the file is writable.

010TP The connection’s initial character set, , could not be converted
by the server. The server’s proposed character set, , will be

used, with conversions performed by jConnect.

Description: The server cannot use the character set initially requested by jConnect,
and has responded with a different character set. jConnect accepts the change, and will
perform the necessary character-set conversions.

The message is strictly informational and has no further consequences.

Action: To avoid this message, set the CHARSET connection property to a character
set that the server supports.

143

SQLState

Message/Description/Action

O0I0UF

Attenpt to execute use database conmand failed. Error nessage:

Description: jConnect was unable to connect to the database specified in the
connection URL. Two possibilities are:

e The name was entered incorrectly in the URL.

« USE_METADATA is “true” (the default condition), but the stored procedures for returning
metadata have not been installed. As a result, jConnect tried to executte thaéabase
command with the database in the URL, but the command failed. This may be because you
attempted to access a SQL Anywhere database. SQL Anywhere databases do not support the
use database command.

Action: Make sure the database name in the URL is correct. Make sure that the stored
procedures for returning metadata are installed on the server (see “Installing Stored
Procedures” in Chapter 3 of théonnect for JDBC Installation Guide and Release
Bulletin). If you are attempting to access a SQL Anywhere database, either do not
specify a database name in the URL or set USE_METADATA to “false.”

010UP

Unrecogni zed connection property __ ignored.

Description: You attempted to set a connection property in the URL that jConnect does
not currently recognize. jConnect ignores the unrecognized property.

Action: Check the URL definition in your application to make sure it references only
valid jConnect driver connection properties.

0100V

The version of TDS protocol being used is too old.
Ver si on:

Description: The server does not support the required version of the TDS protocol.
jConnect requires version 5.0 or later.

Action: Use a server that supports the required version of TDS. See the jConnect
installation guide’s system requirements section for details.

JWOIO

I/O layer: thread operation failed.
Description: An internal error occurred with a timed 1/O stream.

Action: Close and reopen the connection.

JZ001

User name property * ' too long. Maximum length is 30.

Action: Do not exceed the 30 byte maximum.

JZ002

144

Password property * ' too long. Maximum length is 30.

Action: Do not exceed the 30-byte maximum.

APPENDIX A SQL Exception and Warning Messages

SQLState Message/Description/Action

JZ003 Incorrect URL format. URL:

Action: Verify the URL format. See “URL Connection Property Parameters” on page 18

If you are using the PROXY connection property, you may get aJZ003 exception while
trying to connect if the format for the PROXY property isincorrect.

The PROXY format for the Cascade proxy is:
ip_address:port_number

The PROXY format for the TDS Tunneling Servlet is:
http[s]:/host:port/tunneling_serviet_alias

JZ004 User name property missing in DriverManager. get Connection(...,
Properties)

Action: Provide the required user property.

JZ006 Caught 1 OException:

Description: An unexpected I/O error was detected from alower layer. When such I/O
exceptions are caught, they are re-thrown as SQL exceptions using the
ERR_IO_EXCEPTION JZ006 sqlstate. These errors are often the result of network
communication problems.

Action: Try increasing the statement cache size.

JZ008 Invalid col um index value

Description: You have requested acolumn index value of lessthan 1 or greater than the
highest available value.

Action: Check call to the getxxx() method and the text of the original query, or be sure
to call rs.next().

JZ009 Error encountered in conversion. Error nessage:

Description: Some of the possibilities are:
» A conversion between two incompatible datatypes was attempted, sustetsnt.

« There was an attempt to convert a string containing a non-numeric character to a
numeric type.

« There was a formatting error, such as an incorrectly formatted time/date string.

Action: Make sure that the JDBC specification supports the attempted type conversion.
Make sure that strings are correctly formatted. If a string contains non-numeric
characters, do not attempt to convert it to a numeric type.

145

SQLState Message/Description/Action

JZ00B Nurmeri c overfl ow.
Description: You tried to send a Biginteger as a TDS numeric, and the value was too
large, or you tried to send a Java long as an int and the value was too large.
Action: These values cannot be stored in Sybase. For long, consider using a Sybase
numeric. Thereis no solution for Bignum.

JZ00E Attenpt to call execute() or executeUpdate() for a statement where
set Cur sor Nane() has been called
Action: Don't try to callexecute Or executeUpdate On a statement that has a cursor name
set. Use a separate statement to delete or update a cursosi&g€ursors with Result
Sets” on page 4for more information

JZ00F Cursor nane has al ready been set by set Cur sor Nanme()
Action: Do not set the cursor name twice for a statement. Close the result set of the
current cursor statement.

JZ00G No col umm values were set for this row update.
Description: You attempted to update arow in which no column values were changed.
Action: To change column valuesin arow, call updatexx() methods before calling
updateRow().

JZ00H The result set is not updatable. Use
St at ement . set Resul t Set ConcurrencyType().
Action: To change aresult set from read-only to updatable, use the
Statement.setResultSetConcurrencyType() method or add a for update clause to your SQL
select statement.

JZ00L Login failed. Exam ne the SQLWArni ngs chained to this exception for
the reason(s).
Action: See messagetext; proceed according to the reason(s) given for thelogin failure.

JZ010 Unable to deserialize an Object value. Error text:
Action: Make sure that the Java object from the database i mplements the Serializable
interface and isin your local CLASSPATH variable.

JZ011 Nunber format exception encountered while parsing nuneric connection
property .
Description: A non-integer value was specified for a numeric connection property.
Action: Specify an integer value for the connection property.

JZ012 Internal Error. Please report it to Sybase technical support. Wong

146

access type for connection property _ .

Action: Contact Sybase Technical Support.

APPENDIX A SQL Exception and Warning Messages

SQLState

Message/Description/Action

JZ013

Error obtaining JNDI entry:

Action: Correct the INDI URL or make a new entry in the directory service.

JZ0BD

Qut of range or invalid value used for nethod paraneter.

Action: Verify that the parameter value in the method is correct.

JZOBE

Bat chUpdat eException: Error occurred while executing batch
statenent:

JZOBP

Qut put paraneters are not allowed in Batch Update Statenents.

Action:

JZOBR

The cursor is not positioned on a row that supports the ___ nethod.

Description: You attempted to call aResultSet method that isinvalid for the current row
position (e.g., calling insertRow() when the cursor is not on the insert row).

Action: Do not attempt to call aResultSet method that isinvalid for the current row
position.

JZOBS

Bat ch Statements not supported.

JZOBT

The __ nethod is not supported for ResultSets of type

Description: You attempted to call aResultSet method that isinvalid for the type of
ResultSet.

Action: Do not attempt to call aResultSet method that isinvalid for thetype of ResultSet.

JZ0CO

Connection is already closed.

Description: The application has already called Connection.close() on this connection
object; it cannot be used any more.

Action: Fix the code so that connection object references are nulled out whenever a
connection is closed.

JZ0D0

Thi s j Connect installation has not been registered yet. You need to
install the appropriate SybDriverKey cl asses.

Action: Go to the jConnect Web site to register your jConnect software;
at http://www.sybase.com/products/internet/jconnect/).

Onceyou register, you can download the SybDriverkey classes necessary to activate the
jConnect driver.

JZ0D2

Your Sybase JDBC license expired on ____ . Please obtain a new
I'i cense.

Action: Contact Sybase to obtain a new license for your jConnect driver.

147

SQLState Message/Description/Action
JZ0D3 Your Sybase JDBC license will expire soon. Please obtain a new
license. It will expire on

Action: Contact Sybase to obtain a new license for your jConnect driver.
JZ0D4 Unr ecogni zed protocol in Sybase JDBC URL: _

Description: You specified a connection URL using aprotocol other than TDS, which
isthe only protocol currently supported by jConnect.

Action: Check the URL definition. If the URL specifies TDS as a subprotocol make
sure that the entry uses the following format and capitalization:

jdbc:sybase: Tds:host:port
If the URL specifies INDI as a subprotocol, make sure that it starts with:

jdbc:sybase:jndi:
JZ0D5 Error | oading protocol
Action: Check the settings for the CLASSPATH system variable.
JZ0D6 Unrecogni zed version nunmber ____ specifiedin setVersion. Choose one

of the SybDriver.VERSI ON_* val ues, and nmake sure that the version of
j Connect that you are using is at or beyond the version you specify.

Action: See message text.
JZ0D7 Error loading url provider ____ . Error nessage:

Action: Check the INDI URL to make sure it is correct.
JZ0D8 Error initializing url provider:

Action: Check the INDI URL to make sure it is correct.
JZ0EM End of data.

Action: Report this error to Sybase Technical Support.
JZ0HO Unable to start thread for event handler; event name =

Action: Report this error to Sybase Technical Support.
JZ0H1 An event notification was received but the event handl er was not
found; event nane =

Action: Report this error to Sybase Technical Support.
JZOHC lllegal character ° " encountered while parsing hexadecimal
number.

Description: A string that is supposed to represent a binary value contains a character
that is not in the range (0-9, a—f) that is required for a hexadecimal number.

Action: Check the character values in the string to make sure they are in the required
range.

148

APPENDIX A SQL Exception and Warning Messages

SQLState

Message/Description/Action

JZ0I1

I /O Layer: Error reading stream

Description: The connection was unabl e to read the amount requested. Most likely, the
statement time-out period was exceeded and the connection timed out.

Action: Increase the statement time-out value.

JZ012

I /O layer: Error witing stream

Description: The connection was unable to write the output requested. Most likely, the
statement time-out period was exceeded and the connection timed out.

Action: Increase the statement time-out value.

JZ0I3

Unknown property. This message i ndi cates an i nternal product problem
Report this error to Sybase Technical support.

Action: Indicates an internal product problem. Report this error to Sybase Technical
Support.

JZ0I5

An unrecogni zed CHARSET property was specified:

Description: You specified acharacter set code for the CHARSET connection property
that is not supported.

Action; Enter avalid character set code for the connection property. See “jConnect
Character-Set Converters” on page 31

JZ016

An error occurred converting UNICODE to the charset used by the
server. Error nessage:

Action:; Choose a different character set code for the CHARSET connection property
on thejConnect client that can support all the characters you need to send to the server.
You may need to install adifferent character set on the server, too.

JZOr7

No response from proxy gateway.
Description: The Cascade or security gateway is not responding.

Action: Make sure the gateway is properly installed and running.

JZ018

Proxy gateway connection refused. Gateway response:

Description: The Web server/gateway indicated by the PROXY connection property
has refused your connection request.

Action: Check the access and error logs on the proxy to determine why the connection
was refused. Make sure the proxy is a JDBC gateway.

149

SQLState

Message/Description/Action

JZ019

This I nput Stream was cl osed.

Description: You tried to read an I nputStream obtained from getAsciiStream(),
getUnicodeStream(), OF getBinaryStream(), but the InputStream was already closed. The
stream may have been closed because you moved to another column or cancelled the
result set and there were not enough resources to cache the data.

Action: Increase the cache size or read columns in order.

JZOTA

Truncation error trying to send__

Description: There was atruncation error on character set conversion prior to sending
astring. The converted string is longer than the size all ocated for it.

Action: Choose a different character set code for the CHARSET connection property
on thejConnect client that can support all the characters you need to send to the server.
You may need to install adifferent character set on the server, too.

JZOIS

get XXXStream may not be called on a colum after it has been updated
inthe result set.

Description: After updating acolumn in aresult set, you attempted to read the updated
column value using one of the following SybResultSet methods: getAsciiStream(),
getUnicodeStream(), getBinaryStream(). jConnect does not support this usage.

Action: Do not attempt to fetch input streams from columns you are updating.

JZ0J0

O fset and/or |ength val ues exceed the actual text/image |ength.

Action: Check the offset and/or length values you used to make sure they are correct.

JZONC

wasNul | called w thout a preceding call to get a col um.

Description: You can only call wasNull() after a call to get a column, such as getint() or
getBinaryStream().

Action: Change the code to move the call to wasNull().

JZONE

Incorrect URL format. URL: . FError nessage:

Action: Check the format of the URL. Make sure that the port number consists only of
numeric characters.

JZONF

150

Unabl e to | oad SybSocket Factory. Make sure that you have spelled the
class nane correctly, that the package is fully specified, that the
class is available in your class path, and that it has a public zero-
argunent constructor.

Action: See message text.

APPENDIX A SQL Exception and Warning Messages

SQLState Message/Description/Action
JZ0P1 Unexpected result type.
Description: The database has returned a result that the statement cannot return to the
application, or that the application is not expecting at this point. This generally
indicates that the application is using JDBC incorrectly to execute the query or stored
procedure. |f the JDBC application is connected to an Open Server application, it may
indicate an error in the Open Server application that causes the Open Server to send
unexpected sequences of results.
Action: Use the com.sybase.utils.Debug(true, “ALL") debugging toolsto try to figure out
what unexpected result is seen, and to understand its causes.
JZ0P4 Protocol error. This nessage indicates an internal product problem
Report this error to Sybase technical support.
Action: See message text.
JZ0P7 Col um is not cached; use RE- READABLE_COLUWMNS property.
Description: With the REPEAT _READ connection property set to “false,” an attempt
was made to reread a column or read a column in the wrong order.
When REPEAT_READ is “false.” You can only read the column value for a row once,
and you can only read columns in ascending column-index order. For example, after
reading Column 3 for a row, you cannot read its value a second time and you cannot
read Column 2 for the row.
Action: Either set REPEAT_READ to “true,” or do not attempt to reread a column
value and make sure that you read columns in ascending column-index order.
JZ0P8 The RSMDA Col uim Type Nanme you requested is unknown.
Description: jConnect was unable to determine the name of a column type in the
ResultSetMetaData.getColumnTypeName() method.
Action: Check to make sure that your database has the most recent stored procedures
for metadata.
JZ0P9 A COVWPUTE BY query has been detected. That type of result is
unsupported and has been cancel | ed.
Description: The query you executed returned COMPUTE results, which are not
supported by jConnect.
Action: Change your query or stored procedure so it does not use COMPUTE BY.
JZ0PA The query has been cancelled and the same response discarded.

Description: A cancel was probably issued by another statement on the connection.

Action: Check the chain of SQL exceptions and warnings on this and other statements
to determine the cause.

151

SQLState Message/Description/Action

JZ0PB The server does not support a requested operation.

Description: When jConnect creates a connection with a server, it informs the server
of capabilitiesit wants supported and the server informs jConnect of the capabilities
that it supports. This error message is sent when an application requests an operation
that was denied in the original capabilities negotiation.

For example, if the database does not support precompilation of dynamic SQL statements, and
your code invokes SybConnection.prepareStatement(sgl_stmt, dynamic), and dynamic is set to
“true,” jConnect will generate this message.

Action: Modify your code so that it does not request an unsupported capability.

JZORO Result set has already been closed.

Description: The ResultSet.close() method has already been called on the result set
object; you cannot use the result set for anything else.

Action: Fix the code so that ResultSet object references are nulled whenever aresult set
isclosed.

JZO0R1 Result set is IDLE as you are not currently accessing a row.
Description: The application has called one of the ResultSet.getxxX column-data
retrieval methods, but there is no current row; the application has not called
ResultSet.next(), Or ResultSet.next() returned “false” to indicate that there is no data.
Action: Check thats.next() is set to “true” before calling.getxxx.

JZ0R2 No result set for this query.

Description: You usedstatement.executeQuery(), but the statement returned no rows.
Action: UseexecuteUpdate for statements returning no rows.

JZ0R3 Colum is DEAD. This is aninternal error. Please report it to Sybase

techni cal support.
Action: See message text.
JZ0R4 Col um does not have a text pointer. It is not a text/image colum

152

or the colum is NULL.

Description: You cannot update textimagecolumn if it is NULL. A NULL
textimagecolumn does not contain a text pointer.

Action: Make sure that you are not trying to update or get a text pointer to a column
that does not support text/image data. Make sure that you are not trying to update a
textimagecolumn that is NULL. Insert data first, then make the update.

APPENDIX A SQL Exception and Warning Messages

SQLState

Message/Description/Action

~JZORM

refreshRow may not be called after updateRow or del et eRow.

Description: After updating arow in the database with SybCursorResult.updateRow(), OF
deleting it with SybCursorResult.deleteRow(), You used SybCursorResult.refreshRow() tO
refresh the row from the database.

Action: Do not attempt to refresh arow after updating it or deleting it from the database.

JZ0S0

Statenent state machine: Statenent is BUSY.

Description: The only time this error is raised is from the Statement.setCursorname()
method, if the application istrying to set the cursor name when the statement is already
in use and has non-cursor results that need to be read.

Action: Set the cursor name on a statement before you execute any queriesonit, or call
Statement.cancel() before setting the cursor name, to make sure that the statement isn't

busy.

JZ0S1

Statenent state nachine: Trying to FETCH on | DLE statenent.
Description: Aninternal error occurred on the statement.

Action: Close the statement and open another one.

JZ0S2

St atement obj ect has al ready been cl osed.

Description: The statement.close() method has already been called on the statement
object; you cannot use the statement for anything else.

Action: Fix the application so that statement object references are nulled out whenever
a statement is closed.

JZ0S3

The inherited nethod __ cannot be used in this subcl ass.

Description: PreparedStatement does not support executeQuery(String),
executeUpdate(String), Or execute(String).

Action: If you want to pass a query string, use Statement, NOt PreparedStatement.

JZ0A

Cannot execute an enpty (zero-Ilength) query.

Action: Do not execute an empty query (“).

JZ0S8

An escape sequence in a SQL Query was malformed:
Description: This error results from bad escape syntax.

Action: Check JDBC documentation for correct syntax.

JZ0S9

Cannot execute an empty (zero-length) query.

Action: Do not execute an empty query (“).

JZ0SA

Prepared Statenment: |nput paraneter not set, index:

Action: Make sure that each input parameter has a value.

153

SQLState

Message/Description/Action

JZ0SB

Paraneter index out of range:

Description: You have attempted to get, set, or register a parameter that goes beyond
the maximum number of parameters.

Action: Check the number of parametersin your query.

JZ0SC

Callable Statenent: attenpt to set the return status as an
| nPar anet er .

Description: You have prepared a call to a stored procedure that returns a status, but
you are trying to set parameter 1, which is the return status.

Action: Parameters that you can set start at 2 with this type of call.

JZ0SD

No registered paraneter found for output paraneter.

Description: Thisindicates an applicationlogic error. You attempted to call getxxx() or
wasNull() on a parameter, but you have not read any parameters yet, or there are no
output parameters.

Action: Check to make surethat the application has registered output parameters on the
CallableStatement, that the statement has been executed, and that the output parameters
were read.

JZOSE

Invalid object type specified for setObject().
Description: Illegal type argument passed to PreparedStatement.setObject.

Action: Check the JIDBC documentation. The argument must be a constant from
java.sql.Types.

JZOSF

154

No Paraneters expected. Has query been sent?
Description: You tried to set a parameter on a statement with no parameters.

Action: Make sure the query has been sent before you set the parameters.

APPENDIX A SQL Exception and Warning Messages

SQLState Message/Description/Action

JZ0SG An RPC did not return as many output paraneters as the application
had registered for it.

Description: This error occurs if you cal CallableStatement.registerOutParam() for more
parameters than you declared as “OUTPUT"” parameters in the stored procedure. See
“RPC Returns Fewer Output Parameters Than Registered” on pafer 1d8re information.

Action: Check your stored procedures and registerOutParameter calls. Make sure that
you have declared all of the appropriate parameters as “OUTPUT.” Look at the line of
code that reads:

create procedure yourproc (@21 int OUTPUT,

Note If you receive this error while using Adaptive Server Anywhere (previously
known as SQL Anywhere), upgrade to Adaptive Server Anywhere version 5.5.04.

JZ0SH A static function escape was used, but the nmetadata accessor
information was not found on this server.

Action: Install metadata accessor information before using static function escapes.

JZOSI A static function escape was used which is not supported by
this server.

Action: Do not use this escape.

JZ0SJ Met adat a accessor information was not found on this database.

Action: Install metadata information before making metadata calls.

JZ0SM Unsupported SQ type

Action: Do not userypes.NULL, Types.OTHER, OFf PreparedStatement.setObject(null)

JZO0SN set MaxFi el dSi ze: field size cannot be negative.

Action: Use a positive value or zero (unlimited) when calliegiaxFieldSize.

JZ0T2 Listener thread read error.

Action: Check your network communications.

JZ0T3 Read operation tinmed out.
Description: The time allotted to read the response to a query was exceeded.

Action: Increase the time-out period by callisgtement.setQueryTimeout().

JZ0T4 Wite operation timed out. Timeout in mlliseconds:
Description: The time allotted to send a request was exceeded.

Action: Increase the timeout period by calligtement.setQueryTimeout().

155

SQLState

Message/Description/Action

JZ0TS5

Cache used to store responses is full.

Action: Use default or larger value for the STREAM_CACHE_SIZE connection
property.

JZ0T6

Error reading tunnel ed TDS URL.
Description: The tunneled protocol failed while reading the URL header.
Action: Check the URL you defined for the connection.

JZ0T7

Li stener thread read error -- caught ThreadDeath. Check network
connecti on.

Action: Check the network connections and try to run the application again. If the
threads continue to be aborted, contact Sybase Technical Support.

JZ0T9

Request to send not synchroni zed. Please report this error to Sybase
Techni cal Support.

Action: See message text.

JZO0TC

Attenpted conversi on between an illegal pair of types.
Description: Conversion between a Javatype and a SQL type failed.

Action: Check the requested type conversion to make sureit is supported in the JDBC
specification.

JZOTE

Attenpt ed conversi on between an illegal pair of types. Valid database
types are: ’

Description: The database column datatype and the datatype requested in
theresultSet.getxxX() call are not implicitly convertible.

Action: Use one of the valid datatypes listed in the error message.

JZ0US

The SybSocketFactory connection property was set, and the PROXY
connection property was set to the URL of a servlet. The jConnect
driver does not support this combination. If you want to send secure
HTTP from an applet running within a browser, use a proxy URL
beginning with “https://”.

Action: See message text.

JZOCX

156

is an unrecognized transaction coordinator type.

Description: The metadata information indicates that the server supports distributed
transactions, but jConnect does not support the protocol being used.

Action: Verify that you have installed the latest metadata scripts. If the error persists,
contact Sybase Technical Support.

APPENDIX A SQL Exception and Warning Messages

SQLState Message/Description/Action

JZOXS The server does not support XA-style transactions. Please verify that
the transaction feature is enabled and |icensed on this server.
Description: The server to which jConnect attempted a connection does not support
distributed transactions.
Action: Do not use xADataSource With this server, or upgrade/configure the server for
distributed transactions.

JZ0XU Current user does not have permission to do XA-style transactions.
Be sure user has ___ role.
Description: The user connected to the database is not authorized to conduct
distributed transactions. Most likely because they do not have the proper role (shown
in the blank).
Action: Grant the user the role shown in the error message, or have another user with
that role conduct the transaction.

0022 Invalid column name *
Description: You attempted to reference acolumn by name and thereis no columnwith
that name.
Action: Check the spelling of the column name.

ZZ00A The method has not been completed and should not be called.

Description: You attempted to use a method that is not implemented.

Action: Check the release bulletin that came with your version of jConnect for further
information. You can also check the jConnect Web page at http://www.sybase.com to
see whether amore recent version of jConnect implements the method. If not, do not
use the method.

157

158

appenpix 8 JConnect Sample Programs

This appendix is a guide to Sybase jConnect sample programs.

It contains the following sections:

Name Page
Running IsglApp 160
Running jConnect Sample Programs and Code 162

159

Running IsqlApp

Running IsqlApp

IsqlApp alowsyou to issue isql commands from the command line and run
jConnect sample programs.

The syntax for IsqlApp is:

I sql App [-U usernane] [-P password]
[-S servernane]

[- G gat enay]

[-p {http|https}]

[-D debug-cl ass-1ist]

[-Vv]

[-1 input-command-file]
[-c command_term nator]
[-C charset] [-L Il anguage]
[-T sessionl D

[-V <version {2,3,4,5}>]

Parameter Description
-U The login ID with which you want to connect to a server.
P The password for the specified login ID.
-S The name of the server to which you want to connect.
G Gateway address. For the HTTP protocol, the URL is: http://host: port.

To use the HTTPS protocol that supports encryption, the URL is
https://host:port/serviet_alias.

-p Specifies whether you want to use the HTTP protocol or the HTTPS protocol that
supports encryption

-D Turns on debugging for all classes or for just the ones you specify, separated by a
comma. For example,
-D ALL

displays debugging output for all classes.

-D SybConnection, Tds

displays debugging output only for the SybConnection and Tds classes.
v Turns on verbose output for display or printing.
-l Causes IsglApp to take commands from afile instead of the keyboard.

After the parameter, you specify the name of thefileto usefor the IsglApp input. The
file must contain command terminators (“go” by default).

-c Lets you specify a keyword (for example, “go”) that, when entered on a line by itself,
terminates the command. This lets you enter multiline commands before using the
terminator keyword. If you do not specify a command terminator, each new line
terminates a command.

160

APPENDIX B jConnect Sample Programs

Parameter Description

-C Specifies the character set for strings passed through TDS.
If you don't specify a character sedglApp uses the server’s default charset.

-L The language in which to display error messages returned from the server and for
jConnect messages.

-T When this parameter is set, jConnect assumes that an application is trying to resume

communication on an existing TDS session held open by the TDS-tunnelling
gateway. jConnect skips the login negotiations and forwards all requests from the
application to the specified session ID.

-V Enables the use version-specific characteristics. See “JCONNECT_VERSION
Connection Property” on page 9.

Note You must enter a space after each option flag.

To obtain afull description of the command line options, enter:

java |sql App -help
The following example shows how to connect to a database on a host named
“myserver” through port “3756” and run &yl script named “myscript”:

java lIsql App -U sa -P sapassword
-S jdbc: sybase: Tds: nyserver: 3756
-1 $JDBC HOVE/ sp/ nyscript -c run

Note An applet that provides GUI accessdql commands is available as:

For jConnect 4.x:
$IDBC_HOME/sample/gateway.html (UNIX)
%JDBC_HOME%Y\sampl e\gateway.html (Windows)

For jConnect 5.x:
$IDBC_HOME/sample2/gateway.html (UNIX)
%JDBC_HOME%Y\sample2\gateway.html (Windows)

161

Running jConnect Sample Programs and Code

Running jConnect Sample Programs and Code

jConnect includes several sample programs to illustrate many of the topics
covered in this chapter, and to help you understand how jConnect works with
various JDBC classes and methods. In addition, this section includes a sample
caode fragment for your reference.

Sample Applications

When you install jConnect, you can also the install sample programs. These
samples include the source code so that you can review how jConnect
implements various JDBC classes and methods. See the jConnect for JDBC
Installation Guide for complete instructions for installing the sample
programs.

Note ThejConnect sample programs areintended for demonstration purposes
only.

The sample programs areinstalled in the sample subdirectory (jConnect 4.x) or
sample2 subdirectory (jConnect 5.x) under your jConnect installation

directory. Thefile index.html in the sample or sample2 subdirectory containsa
completelist of the samplesthat are available al ong with a description of each
sample. index.html aso lets you view and run the sample programs as applets.

Running the Sample Applets

162

Using your Web browser, you can run some of the sample programs as appl ets.
This enables you to view the source code while viewing the output results.

To run the samples as applets, you need to start the Cascade gateway. See
“Using the Cascade Gateway” on page 131.

Use your Web browser to opéardex.html:
For jConnect 4.x, enter:

http://local host: 8000/sample/index.html
For jConnect 5.x, enter:

http://local host: 8000/sample2/index.html

APPENDIX B jConnect Sample Programs

Running the Sample Programs with Adaptive Server Anywhere

All of the sample programs are compatible with Adaptive Server, but only a
limited number are compatible with Adaptive Server Anywhere. Refer to
index.html in the sample or sample2 subdirectory for a current list of the
sample programs that are compatible with Adaptive Server Anywhere.

To run the sample programs that are available for Adaptive Server Anywhere,
you must install the pubs2_any.sgl script on your Adaptive Server Anywhere
server. Thisscript islocated in the sample (jConnect 4.1) or sample2 (jConnect
5.0) subdirectory.

For Windows, go to DOS command window and enter:

java |Isql App -U dba -P password
-S jdbc: sybase: Tds: [host nane] : [port]
-1 % DBC_HOVE% sanpl e\ pubs2_any. sql -c go

For UNIX, enter:

java Isql App -U dba -P password
-S jdbc: sybase: Tds: [host nane] : [port]
-1 $JDBC_HOWE/ sanpl e/ pubs2_any. sqgl -c go

Sample Code

Thefollowing sample codeillustrates how to invoke the jConnect driver, make
aconnection, issue a SQL statement, and process results.

i mport java.io.*;
i mport java.sql.*;

public class Sanpl eCode

{
public static void main(String args[])
{
try
{
/*
* Qpen the connection. May throw a SQLExcepti on.
*/
Connection con = DriverManager. get Connecti on(
"j dbc: sybase: Tds: nyserver: 3767", "sa", "");
/*

* Create a statenent object, the container for the SQ
* statement. May throw a SQLException.
*/

163

Running jConnect Sample Programs and Code

Statenment stnmt = con.createStatenent();
/*
* Create a result set object by executing the query.
* May throw a SQLExcepti on.

*/
ResultSet rs = stnt.executeQuery("Select 1");
/*
* Process the result set.
*/
if (rs.next())
{
int value = rs.getint(1);
Systemout. println("Fetched value " + val ue);
}
}
/*
* Exception handling.
*/
catch (SQLException sqge)
{
System out . printl n("Unexpected exception : " +
sge.toString() + ", sqlstate =" +
sge. get SQLState());
Systemexit(1);
}
System exit (0);
}

164

Index

A converter classes 31
. setting 32
Adaptive Server supported 33

connectingto 17
connection example 18
Adaptive Server Anywhere 15
accessing metadata 43
connectingto 19
euro symbol 35
sending imagedata 57
SERVICENAME connection property 18
storing and retrieving Javaobjects 70
Advanced features 62
Applets 131,132
APPLICATIONNAME connection property 12
Applications

Character-set conversion
improving driver performance 109
improving performance 33
Character-set converter classes
PureConverter 31
selecting 31
TruncationConverter 31
CHARSET connection property 6, 13
setting 32
CHARSET_CONVERTER connection property 6
CHARSET_CONVERTER_CLASS connection
property 13, 32

migrating tojConnect 4.1 120 CL':etStierAf-lc;r debugging 95
migrating to jConnect 4.2and 5.2 120 Columns

migrating to jConnect 5.x 120

turning off debuggingin 95

turning on debuggingin 95
Audience vii

deletionsin cursor result sets = 47
updating in cursor result sets 48
Compute statements 89
Connecting to
aserver using JNDI 20
Adaptive Server 17
B Adaptive Server Anywhere 19
Connection
errors 100, 101
pooling 82
Connection properties
APPLICATIONNAME 12

Batch updates 56
stored procedures 55

C CANCEL_ALL 6,9,12
_ CHARSET 6,13
CANCEL_ALL connection property 6, 9, 12 CHARSET CONVERTER 6
Capturing TDS communication 98 CHARSET_CONVERTER_CLASS 13,32
Cascade gateway 131 CONNECTION_FAILOVER 13,20
defining aconnectionto 135 DYNAMIC PREPARE 13
installing 131 EXPIRESTRING 13
star_tlng 132 HOSTNAME 13
testing 133 HOSTPROC 13
Character sets IGNORE_DONE_IN_PROC 13

165

Index

JCONNECT_VERSION 9, 13

LANGUAGE 6,13

LANGUAGE_CURSOR 13,117
LANGUAGE_CURSOR and cursor performance 117
LITERAL_PARAMS 14

PACKETSIZE 14

password 14

PROTOCOL_CAPTURE 14

PROXY 14
REMOTEPWD 14
REPEAT_READ 14,109

REQUEST_HA_SESSION 15
SELECT_OPENS CURSOR 15
SERIALIZE_REQUESTS 15
SERVICENAME 15
SESSION_ID 16
SESSION_TIMEOUT 16
setting 12
settingin URL 18
SQLINITSTRING 16
STREAM_CACHE_SIZE 16
SYBSOCKET_FACTORY 16
USE_METADATA 17
user 17
VERSIONSTRING 17
CONNECTION_FAILOVER connection property 13, 20
Connections
defining a connection to the Cascade gateway 135
gateway connection refused 100
Conventions ix
Creating acursor 44
Currency symbol, Euro 35
Cursor performance
and the LANGUAGE_CURSOR connection property
117
Cursor result sets
deletingarow 50
deletions 47
insertingarow 50
methods for updating the database 48
positioned updates 47
positioned updates and deletes using JDBC 1.x methods
47
positioned updates and deletes using JDBC 2.0 methods
48
updating columns 48

166

Cursors 44
creating 44
using with a PreparedStatement 51

D

Databases
JNDI for naming 78

storing Java objects as column datain atable 69

Datatypes

Time, Date, and Timestamp 60
Debug class 94
Debugging 94

methods 96

obtaining an instance of the debug class 94

setting CLASSPATH 95
turning off in your application 95
turning on in your application 95
Deseridlization 76
Deviations from JDBC standards 88
Distributed transaction support 84
Driver
JDBCtypes 2
properties 12
Dynamic classloading 74

DYNAMIC_PREPARE connection property 13

E

Error messages
cutomizing handling 66
error-message handler example 67
handling 65
installing an error-message-handler 67
SQL exception and warning 141
Sybase-specific 65
Errors
connection 100, 101
stored procedure 103
Euro currency symbol 35
Event notification 62
example 63
EXPIRESTRING connection property 13
Extension changes, Sybase 123

Index

F

Font conventions ix

G

Gateways 126
configuration 127
connection refused 100
Open Server 19

H

Handling

error messages 65
High Availability (HA) support 36
HOSTNAME connection property 13
HOSTPROC connection property 13
HTTP 126

IGNORE_DONE_IN_PROC connection property
13
Image data
executing the update with TextPointer.sendData
59
getting a TextPointer object 58
public methods in the TextPointer class 57
sending 57
updating a column with TextPointer.sendData()
58
Installing
an error-message-handler 67
Cascade gateway 131
theTDSservlet 137
Interfaces, JDBC 2
Internationalization 31
Invoking jConnect 10
Isgl applet
running the sample 134
IsglApp utility 160

J

JARS
preloading 77
Java objects
storing and retrievingin ASA 6.0 70
storing as column datain atable 69
storing column dataas 69
jConnect
Cascade gateway 131
debugging 94
definition 4
gateways 126
improving performance 108
invoking 10
memory problemsin applications 102
migrating applicationsto version 4.1 120
migrating applicationsto version4.2and 5.2 120
migrating applicationsto version 5.x 120
sample programs 162
setting connection properties 12
settingup 6
using cursors 44
jConnect 4.x
SCROLL_INSENTIVE result sets 52
JCONNECT_VERSION connection property 9, 13
JDBC
definition 2
driver types 2
interfaces 2
Restrictions, limitations, and deviations 88
JDBC 2.0
Optional Package extensions support 77
standard extensions 77
JDBC drivers
JDBC-ODBC bridge 2
JDBC-ODBC bridge driver 2
Native-APl/partly-Java 2
Native-protocol/al-Java 2
Net-protocol/all-Java 2
jdbc.drivers 10

JINDI
context information 23
using 20

JNDI for naming databases 78

167

Index

L

LANGUAGE connection property 6, 13
LANGUAGE_CURSOR 117
LANGUAGE_CURSOR connection property 13
Lightweight Directory Access Protocol (LDAP) 21
LITERAL_PARAMS connection property 14
Localization 31

M

Memory problems in jConnect applications 102
Metadata
accessing 42
server-sideimplementation 43
USE_METADATA 17
Multibyte character sets
converter classes 31
supported 33
Multithreading
making adjustments 88

N

Native-APl/partly-Javadriver 2
Native-protocol/all-Javadriver 3
Net-protocol/all-Javadriver 2

O

Open Server Gateway 19

P

PACKETSIZE connection property 14
Password 14
Performance tuning 108
Pooling connections 82
Positioned updates and deletes

using JDBC 1.x methods 47

using JDBC 2.0 methods 48
Preloading JARS 77

168

PreparedStatement
using with cursors 51
Properties
driver 12
PROTOCOL_CAPTURE connection property 14
PROXY connection property 14
PureConverter class 31

R

Related documents vii
Remote procedure calls (RPCs)
server-to-server 41
REMOTEPWND connection property 14
REPEAT_READ 109
REPEAT_READ connection property 14
REQUEST_HA_SESSION 15
Resuming
TDSsessions 139
Rows
deleting from acursor result set 50
inserting in acursor result set 50

rs.getByte() 61

S

Sample programs 162
SCROLL_INSENSITIVE result setsin jConnect 4.x
52

SELECT_OPENS_CURSOR connection property 15
Selecting a character-set converter class 31
Sending image data 57
SERIALIZE_REQUESTS connection property 15
Server-to-server remote procedure calls 41
SERVICENAME connection property 15
Servlet arguments

Debug 138

SkipDoneProc 137

TdsResponseSize 138

TdsSessionldleTimeout 138
Servlets 126

TDS 126
SESSION_ID connection property 16
SESSION_TIMEOUT connection property 16

Index

setRemotePassword() 41
Setting

jConnect connection properties 12

TDS servlet arguments 137
SQL exception and warning messages 141
SQLINITSTRING connection properties 16
Statement.cancel() 9
Stored procedures

errors 103

executing 89

updating the database from theresult set 56
Storing Java objects as column datain atable 69

prerequisites 70

receiving Java objects from the database 72

sending Java objectsto adatabase 70
STREAM_CACHE_SIZE connection property 16
Sybase extension changes 123
SybEventHandler 62
SybMessageHandler 66
SYBSOCKET_FACTORY connection property 16
Syntax conventions ix
System properties

jdbc.drivers 10

T

TDS 4
capturing communication 98
installing servlets 137
resuming sessions 139
servlet system requirements 137
serviets 126
setting servlet arguments 137
tracking sessions 139
tunnelling 126
Technical Library vii
Time, Date, and Timestamp datatypes 60
Tracking TDS sessions 139
Troubleshooting 94
TruncationConverter class 31, 35
Tunnelling
TDS 126
Turning off debugging in your application 95
Turning on debugging in your application 95
TYPE_SCROLL_INSENSITIVE limitations 52

U
Updating
database from the result set of a stored procedure
56
URL
connection property parameters 18
syntax 18
USE_METADATA connection property 17
User 17
Utilities
IsglApp 160

\Y

VERSIONSTRING connection property 17

w

Web server gateways 126

X

XAServer 84

169

Index

170

	Sybase® jConnect for JDBC™ Programmer’s Reference
	jConnect for JDBC
	About This Book
	Audience
	Related Documents
	Other Sources of Information
	Sybase Certifications on the Web
	For the latest information on product certifications and/or the EBF Rollups:
	If you are a registered SupportPlus user:
	If you are not a registered SupportPlus user, and you want to become one:
	Whether or not you are a registered SupportPlus user:

	Conventions
	If You Need Help

	CHAPTER 1 Introduction
	What is JDBC?
	Table 1-1: JDBC interfaces

	What is jConnect?
	CHAPTER 2 Programming Information

	Setting Up jConnect
	Setting the jConnect Version
	Table 2-1: jConnect version settings and their features
	JCONNECT_VERSION Connection Property
	CANCEL_ALL Connection Property

	Invoking the jConnect Driver
	Method 1
	Method 2

	Establishing a Connection
	Setting Connection Properties
	Table 2-2: Connection properties

	Connecting to Adaptive Server Enterprise
	Example
	URL Connection Property Parameters

	Connecting to Adaptive Server Anywhere
	Connecting to Adaptive Server Anywhere 5.x.x

	Connecting to a Server Using JNDI
	Connection URL for Using JNDI
	Required Directory Service Information
	Table 2-3: Directory service information required for JNDI

	CONNECTION_FAILOVER Connection Property
	Providing JNDI Context Information

	Implementing Custom Socket Plug-Ins
	SYBSOCKET_FACTORY Connection Property
	Creating and Configuring a Custom Socket
	Example

	Handling Internationalization and Localization
	jConnect Character-Set Converters
	Selecting a Character-Set Converter
	Setting the CHARSET Connection Property
	Improving Character Set Conversion Performance
	Supported Character Sets
	Table 2-4: Supported Sybase character sets

	European Currency Symbol Support
	Unsupported Character Sets

	Working with Databases
	Implementing High Availability Failover Support
	Overview
	Requirements, Dependencies, and Restrictions
	Implementing Failover in jConnect
	Logging In to the Primary Server
	Failing Over to the Secondary Server
	Failing Back to the Primary Server

	Performing Server-to-Server Remote Procedure Calls
	Accessing Database Metadata
	Server-Side Metadata Installation

	Using Cursors with Result Sets
	Table 2-5: java.sql.ResultSet options available in jConnect 5.x
	Creating a Cursor
	Positioned Updates and Deletes Using JDBC 1.x Methods
	Deletions in a Result Set

	Positioned Updates and Deletes Using JDBC 2.0 Methods
	Updating Columns in a Result Set
	Methods for Updating the Database from a Result Set
	Example

	Deleting a Row from a Result Set
	Inserting a Row Into a Result Set

	Using a Cursor with a PreparedStatement
	Support for SCROLL_INSENSITIVE Result Sets in jConnect
	Figure 2-1: Class diagram

	Support for Batch Updates
	Implementation Notes

	Updating the Database from the Result Set of a Stored Procedure
	Working with Datatypes
	Sending Image Data
	Public Methods in the TextPointer Class
	v Updating an Image Column with TextPointer.sendData()
	Getting a TextPointer Object
	Executing the Update with TextPointer.sendData

	Using Date and Time Datatypes
	Implementation Notes

	Char/Varchar/Text Datatypes and getByte()

	Implementing Advanced Features
	Using Event Notification
	Event Notification Example

	Handling Error Messages
	Retrieving Sybase-Specific Error Information
	Customizing Error Message Handling
	Installing an Error-Message-Handler
	Error-Message-Handler Example

	Storing Java Objects as Column Data in a Table
	Prerequisites for Storing Java Objects As Column Data
	Sending Java Objects to a Database
	Receiving Java Objects from the Database

	Dynamic Class Loading
	Using DynamicClassLoader
	Deserialization
	Preloading JARS
	Advanced Features

	JDBC 2.0 Optional Package Extensions Support
	JNDI for Naming Databases
	Reference
	Related Interfaces
	Usage
	1a. Configuration by administrator: LDAP
	1b. Access by client
	2a. Configuration by administrator: custom
	2b. Access by client

	Connection Pooling
	Reference
	Related Interfaces
	Overview
	Configuration by administrator: LDAP
	Access by middle-tier clients

	Distributed Transaction Management Support
	Reference
	Related Interfaces
	Background and System Requirements
	For Adaptive Server Enterprise 12.0
	Figure 2-2: Distributed Transaction Management Support with version 12.x
	For Adaptive Server Enterprise 11.x
	Figure 2-3: Distributed Transaction Management Support with version 11.x

	Adaptive Server Enterprise 12.x Use
	Configuration by administrator: LDAP
	Access by middle-tier clients

	Adaptive Server Enterprise 11.x Use
	Configuration by administrator: LDAP
	Figure 2-4: Distributed Transaction Management Support sample configuration
	Access by middle-tier clients

	Handling Restrictions, Limitations, and Deviations from JDBC Standards
	Making Adjustments for Multithreading
	Using ResultSet.getCursorName()
	Using setLong() with Large Parameter Values
	Using COMPUTE Statements
	Executing Stored Procedures
	CHAPTER 3 Troubleshooting

	Debugging with jConnect
	Obtaining an Instance of the Debug Class
	Turning On Debugging in Your Application
	Turning Off Debugging in Your Application
	Setting the CLASSPATH for Debugging
	Using the Debug Methods

	Capturing TDS Communication
	PROTOCOL_CAPTURE Connection Property
	pause() and resume() Methods in the Capture Class

	Unsuccessful Connection Errors
	Gateway Connection Refused
	Unable to Connect to a 4.9.2 SQL Server

	Memory Usage in jConnect Applications
	Stored Procedure Errors
	RPC Returns Fewer Output Parameters Than Registered
	Fetch/State Error When Stored Procedure Returns Output Params
	Stored Procedure Executed in Unchained Transaction Mode

	Custom Socket Implementation Error
	CHAPTER 4 Performance and Tuning

	Improving jConnect Performance
	BigDecimal Rescaling
	REPEAT_READ Connection Property
	Character-Set Conversion

	Performance Tuning for Prepared Statements in Dynamic SQL
	Choosing Between Prepared Statements and Stored Procedures
	Prepared Statements in Portable Applications
	Prepared Statements in Applications with jConnect Extensions
	If Most Dynamic Statements Are Executed Very Few Times
	If Most Dynamic Statements Are Executed Many Times in a Session

	Connection.prepareStatement()
	DYNAMIC_PREPARE Connection Property
	SybConnection.prepareStatement()

	Cursor Performance
	LANGUAGE_CURSOR Connection Property
	CHAPTER 5 Migrating jConnect Applications

	Migrating jConnect Applications
	Migrating Applications to jConnect 4.1
	Migrating Applications to jConnect 5.x
	Migrating Applications to jConnect 4.2 and 5.2
	A. Use the new Sybase extensions.
	B. Change CLASSPATH for newJDBC_HOME installation structure.
	C.�Recompile to use new jConnect 5.x driver

	Sybase Extension Changes
	Change Example
	Changed Method Names
	Debug Class
	CHAPTER 6 Web Server Gateways

	About Web Server Gateways
	TDS Tunnelling
	jConnect and Gateway Configuration
	Web Server and Adaptive Server on One Host
	Dedicated JDBC Web Server and Adaptive Server on One Host
	Web Server and Adaptive Server on Separate Hosts
	Connecting to a Server Through a Firewall

	Using the Cascade Gateway
	Usage Requirements
	Installing the Cascade Gateway
	Starting the Cascade Gateway
	Windows NT and Windows 95
	UNIX
	Troubleshooting

	Testing the Cascade Gateway
	Troubleshooting

	Reading the index.html File
	Troubleshooting

	Running the Sample Isql Applet
	Troubleshooting

	Defining a Connection to the Cascade Gateway

	Using the TDS-Tunnelling Servlet
	Table 6-1: Client to gateway login request. No session ID.
	Table 6-2: Gateway to client. Header contains session ID assigned by the TDS servlet.
	Table 6-3: Client to gateway. Headers for all subsequent requests contain the session ID.
	Table 6-4: Gateway to client. Headers for all subsequent responses contain the session ID.
	TDS-tunnelling Servlet System Requirements
	Installing the Servlet
	Setting Servlet Arguments

	Invoking the Servlet
	Tracking Active TDS Sessions
	Terminating TDS Sessions

	Resuming a TDS Session
	TDS Tunnelling and Netscape Enterprise Server 3.5.1 on Solaris
	APPENDIX A SQL Exception and Warning Messages
	APPENDIX B jConnect Sample Programs

	Running IsqlApp
	Running jConnect Sample Programs and Code
	Sample Applications
	Running the Sample Applets
	Running the Sample Programs with Adaptive Server Anywhere

	Sample Code

