Symantec Confidential

Procomm Plus® Interface Specification Overview and
Shared Callback Functions

DIx Overview - Procomm Plus Version 4.8 Page 1 of 13

Symantec Confidential

Table of Contents

INTRODUCTION 3
DLL EXTENSIONS 3
DLX INTERFACE OVERVIEW 3
DATA STRUCTURES 3
DLX ENTRY POINTS 4
CALLBACK FUNCTIONS 4

Callback Functions Based On WIN 3.x SDK And Standard C Library Functions 5

General Purpose Callback Functions 6

GRX functions 8
INDEX OF FUNCTIONS 13

DIx Overview - Procomm Plus Version 4.8 Page 2 of 13

Symantec Confidential

Introduction

Although Procomm Plus is the most full-featured Windows communications program available
today, there may be certain situations where a technologically-sophisticated user needs
additional capabilities that are not provided in the standard product. Procomm Plus was
developed to be easily extended through the addition of user-written DLL’s. In fact, some of
the features of the standard product were developed using the DLL procedures described in
this document.

DLL Extensions

Procomm Plus recognizes three distinct types of DLL extensions; collectively, these are
referred to as DLx’s. DLx’s are used to extend Procomm Plus’s capabilities in three areas:

File Transfer Protocols can be added to Procomm Plus using Dynamically Linked
Protocols (DLP’s). One example is the INDFILE.DLP, which provides the IND$FILE
protocol within Procomm Plus 2.xx, 3 and 4.xx.

Terminal Emulations can be added using Dynamically Linked Terminals (DLT's).
The RIPscrip 1.54 emulation is a DLT, and the Minitel, Prestel and BTX terminals
shipped with the various Procomm Plus 2 and 3 International versions are all
.DLT’s.

Connection support can be added using Dynamically Linked Connections (DLC'’s),
which allow redirection of the Windows Comm calls. Examples of these files include
the PWTELNET.DLC and PW3NCSI.DLC, which redirects the communications calls
to a network communications server.

When Procomm Plus is first executed, it searches its installation directory for any files with
.DLP, .DLT or .DLC filename extensions. If any are found, they are loaded, initialized and
added to Procomm Plus’s list of supported terminal emulations, protocols, or connection types.

DIx Interface Overview

Procomm Plus maintains several data structures which are important to developers of DLP’s,
DLC’s, and DLT's, which are collectively known as DLx’s. These data structures, in conjunction
with callback functions into Procomm Plus and the DLx entry points, provide partial extensibility
of Procomm Plus.

Data Structures

The data structures required for interfacing DLx's and Procomm Plus are defined in the
#include files which accompany any specific DLx specification. These structure definitions are
subject to change with future versions of Procomm Plus. If it becomes necessary for a
developer to change any of these structures, new fields should be appended to the end of the
existing structures, rather than inserted into the middle. This will insure maximum compatibility
with future versions of Procomm Plus.

DIx Overview - Procomm Plus Version 4.8 Page 3 of 13

Symantec Confidential

In general, any DLx must be capable of handling multiple instances of Procomm Plus. This
means that all data that is specific to an instance of the caller of the DLx must be maintained
as instance data. Typically, this is done by extending the currently-available mechanisms
provided by the DLx interfaces.

Each call to a DLx from an instance of Procomm Plus includes a pointer into a data structure
maintained by that particular instance. An area within the data structure is made available to
the DLx, allowing it to maintain its own pointer to an allocated data structure for any purpose.

P Note: The point is that each DLx is responsible for maintaining a separate state for
each instance of a calling application, and that the calling application will make some of
its local data available to the DLx in order to help it do so.

For example, in the DLT interface the main data structure is called a PW_DLT. It contains a
variable, iDLLMagiclndex, which the DLT is free to use as it needs. Typically, the DLT would
maintain a static table of pointers to instance data and use iDLLMagiclndex to specify which
pointer to use.

A simpler interface is provided for a DLP. The PROTOSET structure contains a byte field
called temp[66], which can be used in any way by the DLP. In particular, the DLP can map a
structure onto this data which contains all of the DLP’s instance data. If the instance data is
longer than 66 bytes, the first 4 bytes can be interpreted as a pointer to an allocated instance
data structure.

The callback function, P_ReadNamedStruct(), allows a DLx to access Procomm Plus’s
internal state structures, which are stored in the parameter (PW4.PRM) file. The access is
fairly complicated, and is best understood by looking at ddirdIx.h, which defines the structures
returned by P_ReadNamedStruct(), and at the SET structures in pwdlIx.h, which are included
in the definitions of the named table structures from ddirdIx.h.

DLx Entry Points

When Procomm Plus first begins executing, it performs a search in its installation directory for
all files with a suffix of .dlp, .dlc, or .dlt. Each DLx file type has at least one entry point which
can be called by Procomm Plus. For example, the DLT files have a single entry point which is
used as a function dispatcher. Procomm Plus calls the DLT entry point with a function code
requesting the DLT to perform some action. DLP files on the other hand have four entry points:
different places in Procomm Plus code call the appropriate DLP entry point to execute a
particular function.

P Note: Please refer to the appropriate DLx documentation for specific details
concerning their entry points.

Callback Functions

All of Procomm Plus’s callback functions are available as exports. Some are also available
through callback pointers in the PW_CALLBACK_STRUCT structure, which is defined in
cbackdlx.h. This file also contains typedefs which greatly simplify calling these functions
through the callback structure.

DIx Overview - Procomm Plus Version 4.8 Page 4 of 13

Symantec Confidential

However, callback functions should be called directly, just as one makes a call into other
Windows DLLs. This is done by linking with pw.lib, then simply calling the functions;
prototypes are available by including cbackdIx.h.

Some of the code contains examples of calls indirected through the
PW_CALLBACK_STRUCT structure, but these are obsolete. Direct calls are both faster and
easier to code.

Callback Functions Based On WIN 3.x SDK And Standard C Library Functions

Almost all of the Comm functions from the Windows SDK have been duplicated in Procomm
Plus, and have been exported to make them accessible by DLx’'s. The names of the exported
SDK functions are created by prefixing the SDK function name with P_ and appending a W.
Thus, ReadComm becomes P_ReadCommW, and P_ReadCommW takes the same
arguments and returns the same return code as ReadComm. There are a few exceptions
documented in cbackdlx.h. The following functions are based on their SDK counterpart:

int PASCAL P_ReadCommW (COMM_HANDLE nCid, LPSTR IpBuf, int nSize);
int PASCAL P_WriteCommW (COMM_HANDLE nCid, LPSTR IpBuf, int nSize);
int PASCAL P_FlushCommW (COMM_HANDLE nCid, int nQueue);

int PASCAL P_SetCommBreakW (COMM_HANDLE nCid);

int PASCAL P_ClearCommBreakW (COMM_HANDLE nCid);

int PASCAL P_GetCommStateW (COMM_HANDLE nCid, DCB *IpDCB);

int PASCAL P_SetCommStateW (DCB *IpDCB);

int PASCAL P_EscapeCommFunctionW (COMM_HANDLE nCid, int nFunc);

int PASCAL P_GetCommErrorW (COMM_HANDLE nCid);

P Note: The SDK function has status. That is, this function does not
follow the SDK.

int PASCAL P_GetCommErrorX (COMM_HANDLE nCid, COMSTAT *Ipstat);

P Note: This function exactly corresponds to the SDK'’s
GetCommeError () function.

DIx Overview - Procomm Plus Version 4.8 Page 5 of 13

Symantec Confidential

General Purpose Callback Functions

__
BOOL PASCAL P_AddToTXBuf (LPSTR string, int cnt, unsigned char do_pause,

unsigned char do_record)

P_AddToTXBuf () is generally used to transmit characters out the port. It
handles character pacing if necessary, pausing if necessary and any needed
indirection by calling WriteCommW ().

Typically, emulation code would call P_AddToTXBuf () with do_pause FALSE.
do_record should be TRUE when sending the user’s keystrokes, but FALSE if
the emulation is responding to a host command for information.

Arguments:
string. A pointer to the string to be added.
cnt. The count of characters in the string.

do_pause. True if every pause character in the string (available via a pointer)
should be converted into a 1/2 second pause before shipping the next character
out the port.

do_record. True if the string should be considered user output.

Returns:

TRUE on success, FALSE on fail (if there is insufficient room in the transmit
buffer). If FALSE is returned, then NONE of the characters in string were
buffered, and the entire string should be sent again at a later time.

__
void PASCAL P_DisplayStatusMessage (LPSTR msg, BOOL BlinkAndBeep)

This function is very similar to P_StatusLineDirect (), except it allows a means
of beeping and blinking the status message.

P Note: If you're setting BlinkAndBeep FALSE, it would be more
efficient to use P_StatusLineDirect () instead.

Arguments:

msg. A ptr to a string to be displayed on the Procomm Plus Status Line, or
NULL to clear the Status Line

BlinkAndBeep. TRUE to beep and cause the message to blink, FALSE to
display the message normally.

DIx Overview - Procomm Plus Version 4.8 Page 6 of 13

Symantec Confidential

__
LPVOID PASCAL P_ReadNamedStruct (int Table, int Index)

P_ReadNamedStruct () provides access to Procomm Plus’s internal state
structures which are stored in the parameter file. The access is fairly
complicated, and is best understood by looking at the included files ddirdIx.h,
which defines the structures returned by P_ReadNamedStruct(), and at the
*SET structures in pwdIx.h, which are included in the definitions of the named
table structures from ddirdIx.h.

The values should be treated as read-only, as Procomm Plus could become
internally inconsistent if any values were changed without going through the
standard interface (which is Setup). If you do need to change the values, all
entries can be accessed through Aspect, which properly type checks and
maintains internal consistency.

Arguments:

Table. A #define from the top of ddirdIx.h, which specifies which Named Table
(that is, which structure in ddirdlx.h), will be accessed.

Index. Specifies which entry in the given Named Table to access. A (-1) means
to retrieve the entry currently in use. For example, to retrieve the Named Table
of the ANSIBBS emulation, the index would be 4 (look in the popup list of
emulations in Setup:Terminal), but if you want the Current emulation, regardless
of which emulation is in use, then pass in a (-1).

Returns:

A pointer to the requested structure on success; otherwise, a NULL pointer. In
general, the pointer must be explicitly cast to the type of pointer to DDStruct,
where DDStruct is one of the DD**** structures defined in ddirdIx.h.

P Note: To iterate through all named tables, start with an index of O,
and loop with index++ until the return value is NULL.

__
void PASCAL P_StatusLineDirect (LPSTR msg)

When called, this function causes Procomm Plus to display the msg argument
on the Procomm Plus Status Line. If a message needs to be displayed to the
user, use the Procomm Plus Status Line. Status Line messages are not
gueued; only one message can be displayed at a time.

P Note: Most Procomm Plus strings are defined in a resource file
instead of a .c or .h file. This is to facilitate translating Procomm Plus into
different languages. If you use status messages defined in an .RC file,
you must do a LoadString () before calling P_StatusLineDirect ().

DIx Overview - Procomm Plus Version 4.8 Page 7 of 13

Symantec Confidential

P Warning! Do not use Message Boxes, please! They cause problems
with reentrancy because Procomm Plus continues to run off the timer
while the Message Box is up!

Argument:

msg. A ptr to a string to be displayed on the Procomm Plus Status Line, or
NULL to clear the Status Line

GRX functions

Recognizing specific character sequences in the incoming data stream is often a necessary
requirement when implementing DLx’s, especially terminal emulations. The “GRX” functions,
described below, are designed to access the Procomm Plus input stream parsing engine, and
to take into consideration the various Procomm Plus requirements for DLx activities.

__
int PASCAL P_GRXRegisterString(LPSTR IpString, int Count, BYTE bFlags,

DWORD dwTime, LPFN_GRXCALLBACK Ipfn)

This function registers a string to be used for pattern matching against the input
stream. If the pattern is matched or a timeout time is reached, the callback
function specified will be called within the context of Procomm Plus.

Arguments:

LPSTR IpString. Points to a constant string to be searched for in the input
stream.

int Count. The number of characters in the IpString target pattern.

BYTE bFlags. A set of bitflags defining how the string is to matched and what
will happen after it is matched. The bitflag values are:

GRX_CASE (0x01) The string matching algorithm is case sensitive.

GRX_FLUSH (0x02) Once matched, the matched string will be put
into the GRX buffer, so that it will be seen by P_GRXGet(). If this
flag is not set, then the string, once matched, will not be placed
in the GRX buffer. In other words, the string will effectively be
stripped from the input stream.

GRX_IMMEDIATE (0x04) The callback function is called
immediately upon matching. At that time, there may be
characters still in the GRX buffer. If this flag is not set, the
callback function will not be called until the GRX buffer has been

DIx Overview - Procomm Plus Version 4.8 Page 8 of 13

Symantec Confidential

emptied. In essence, the gatherer stops processing and waits
until its queue is empty before calling the callback function.

GRX_TIMEOUTONLY (0x08) The callback function will be called only
after the timeout specified in the DWORD dwTime. In other
words, even if the |[pString is matched the callback function will
not be called, but the timer is reset if IpString is matched.

GRX_XLATE (0x10) The input streams will be stripped via the
current emulation’s “Strip 8th Bit” flag, and the result run through
the input translate table before being tested for matching.

DWORD dwTime. If dwTime is zero, an infinite wait is implied. If not zero,
dwTime represents a timeout value in milliseconds, which is the amount of time
to wait before calling the callback function. If a match is found before the time
specified, the callback function is also called. If bFlags & GRX_TIMEOUTONLY
(0x08), then the callback function is called only after the timeout value. Thus, it
would be a logical error to have bFlags & GRX_TIMEOUTONLY (0x08) and
dwTime = 0.

LPFN_GRXCALLBACK Ipfn. A pointer to the callback function. The callback
function is pascal, takes an int, an LPSTR, and two more ints, and returns an
int. It must be callable from the Procomm Plus context, so it should probably be
exported and in a DLL. Its return value is either 1, to leave the string registration
in place, or 0, to automatically unregister the string. Its arguments are:

int, which is the handle of the registered string.
LPSTR, which points to the matched string.
int, which is the length of the matched string.

STRDB_MATCHED (1) if the string matched or STRDB_NOMATCH
(-3) if it did not match (for example, if the function is being called
because of a timeout).

Returns:

int handle to the registered string. This value is used to reference the
registration of the string in any subsequent calls to the GRX subsystem. A
handle equal to -1 indicates an error occurred when attempting to register the
string.

DIx Overview - Procomm Plus Version 4.8 Page 9 of 13

Symantec Confidential

int PASCAL P_GRXRegisterSpecialString (LPSTR IpString, int Count,
LPSTR IpSpecial, BYTE bFlags, DWORD dwTime, LPFN_GRXCALLBACK Ipfn)

This function should be used if you want to match all strings of the form a?b
where ? represents a single character. More complex pattern matching schemes
such as regular expressions are not supported.

Arguments:

These arguments are the same as those for P_GRXRegisterString() except for
the LPSTR IpSpecial argument, which points to a string of the same length as
the IpString, and which has a byte corresponding to each byte in the IpString.
Each of the bytes in the IpSpecial has its Oth bit set, or not set. If the Oth bitis 1
then the pattern matcher does not care what is in that position in the IpString. If
the Oth bit is O, then the pattern matcher does care what is in that position.

Returns:

int handle to the registered string. This value is used to reference the
registration of the string in any subsequent calls to the GRX subsystem. A
handle equal to -1 indicates an error occurred when attempting to register the
string.

void PASCAL P_GRXUnregisterString (int handle)

P_GRXUnregisterString() must be called when the caller no longer needs the
string. Failure to do so will eventually lead to a performance degradation in
Procomm Plus itself.

Arguments:

int handle is the value returned from P_GRXRegisterString() or
P_GRXRegisterSpecialString().

void PASCAL P_GRXEnableString (int handle, BOOL bEnable)
Arguments:

int handle is the value returned from P_GRXRegisterString() or
P_GRXRegisterSpecialString(). If BOOL bEnable is TRUE, matching on the
string will be enabled; if FALSE, it will be disabled.

After the initial call to P_GRXRegisterString() or
P_GRXRegisterSpecialString(), the matching is ON by default. To turn it off
you must explicitly call P_GRXEnableString(handle, FALSE). The string may
be unregistered by P_GRXUnregisterString() whether it is enabled or not.

DIx Overview - Procomm Plus Version 4.8 Page 10 of 13

Symantec Confidential

|
BOOL PASCAL P_GRXQueueEmpty (void)

Returns:

TRUE if the GRX buffer is empty.

P Warning: It may happen that there is data waiting in the input
Windows Comm buffer even though this function returns TRUE. It is
important to periodically call P_GatherAndMatchInputStream() so that
the input Comm buffer can be read and processed. Only after such a call
is the return value from P_GRXQueueEmpty() valid.

__
int PASCAL P_GRXGet (LPSTR IpChar, LPSTR IpSrc, int count)

P_GRXGet() should be called to read characters from the input stream parser.
Although P_ReadCommW() will read characters directly from the COM port,
P_GRXGet() should be used or Procomm Plus will not be able to parse the read
characters - this can cause unpredictable and probably unpleasant results.

Arguments:
IpChar. A pointer to a buffer to receive the characters.

IpSrc. A pointer to a buffer to receive the source of characters, or NULL if you
do not need that information. The IpSrc values will parallel the values in IpChar;
COM port is COM_PORT_STREAM (0x1), Local Echo is
LOCAL_ECHO_STREAM (0x2) and File Replay is PLAYBACK_STREAM (0x4)

count. The maximum number of characters that should be received. This is the
size of the buffer - no terminating null is used.

Returns:

int nChars. The number of characters actually retrieved and placed into the
buffers pointed to by IpChar and IpSrc (if non-NULL).

__
void PASCAL P_GatherAndMatchInputStream (BYTE Filter)

Call P_GatherAndMatchInputStream() to allow the Procomm Plus gatherer to
gather characters and buffer them. P_GRXGet() and P_GRXQueueEmpty()
can then be sensibly called. P_GatherAndMatchInputStream() can be called
as often as needed. It can simply be called off the timer, or it can be called only
after P_GRXGet() fails or P_GRXQueueEmpty() returns TRUE.

P_GatherAndMatchinputStream() only buffers 1K of data, so if you expect a

data stream of 10K per second, you should ensure that it is called at least 10
times per second.

DIx Overview - Procomm Plus Version 4.8 Page 11 of 13

Symantec Confidential

Arguments:

Filter. Defines which input streams to read from. The flags are bit flags, with the
value of COM port defined in P_GRXGet. Typically, one would call this function
with the value ALL_STREAMS = (COM_PORT_STREAM |
LOCAL_ECHO_STREAM | PLAYBACK_STREAM).

DIx Overview - Procomm Plus Version 4.8 Page 12 of 13

Symantec Confidential

Index of Functions

P _GRXQUEUEBEMPLY ..ottt e e e e e e e e e e e e e e e n e 10
AN Lo 1o 1 15 = 1) 5
P _ClearComMBIEaKWVcoiiiii e e et e e e e e et e e e e e e e e e et e e e e e st e e e e etan e e eernanans 5
P _DiSPlay StAtUSMESSAQE .. . uuuuutiiiiiiiiiiiiiitiiite bbb n e nnnnne 6
P_ESCcapeComMMEUNCHIONWViiiiiiiiiiiiiiiieiiiiei e nnnnnne 5
e o 10 1] o o 412 YA 5
P_GatherAndMatChINPUESII@AMuuiiiiiiiiiiiiiiii e 11
P GetCOMMEITOIWV L. ettt e et e e e et e e e e et e e e eeaa s 5
P_GetCOMMSTALEWV ... e ettt e et e e et e e e et e e e e et e e e aeeaans 5
P_GRXENADIESIIING ..eiiiiiiiiiiiiiiiiii e 10
e €13 9 1 = TSP 10
P_GRXREQiSterSPECIAISTIINGuuuuuiiiiiiiiiiiiiiiiiei it nnnnnne 9
P_GRXREGISTEISIIING ...ttttitiiiiiiitiiiittttite et nnne 8
P_GRXUNTEQISTEISEIING ..tttttiitiiiiiiiiiiiiiieeiiibtieees bbb nssssnnnnnnnnne 10
L == (o [0 oY 4 17 A 5
e R T= T L= Vg 0 =T 1] 0 Lo S 6
P_SetCOMMBIEAKWV ...ttt e e e e e e et e e e e e e e e e e etna e e eeeas 5
P_SetCOMMSTALEWV ... ettt e et e e et e e e e et e e e eeaa s 5
S = AU 1] T g T=T I 1 = o 7
A L =T o 0 T S 5

DIx Overview - Procomm Plus Version 4.8 Page 13 of 13

