
COPYRIGHT  1999 SYMANTEC

STAFF DEVELOPMENT DEPARTMENT

Intermediate ASPECT Scripting

 PPaaggee 22 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 33 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Table of Contents

Intermediate ASPECT Scripting ... 1

Table of Contents .. 3

Introduction.. 7

About This Manual ... 8

Chapter 1 - General Scripting Conventions .. 9

ASPECT Editor .. 9

Parameter Passing .. 17

Arrays... 18

Compiling and Debugging ... 19

Chapter 2 - Standard Dialogue Boxes ... 23

User Input .. 23

Message Box ... 24

Example of Standard Dialog Box Script ... 25

File Open ... 25

File Save.. 26

Chapter 3 - String Manipulations ... 28

Compare .. 28

Search.. 30

Replace or Insert ... 31

Parsing... 32

Miscellaneous .. 34

Formatting.. 34

Conversions to and from Numbers .. 37

Chapter 4 - Dialog Boxes.. 38

Dialog Editor .. 38

Layout Assistance.. 42

 PPaaggee 44 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Dialog Box Styles ...43

Programming with Dialog Boxes...45

Dialog Box Events ..48

Common Dialog Box Elements ...50

Chapter 5 - Connection Directory ...56

Set/Fetch dialentry Commands ..56

Dialing Commands ...58

Chapter 6 - Fax...60

Chapter 7 - DOS File Commands..65

File Existence ...65

File Information Commands..68

File Path Commands ..69

File-Moving Commands..70

Directory Commands..70

Miscellaneous DOS commands..71

Chapter 8 - File I/O Procedures...73

Chapter 9 - File Transfers..77

Chapter 10 - DDE..79

DDE Session ..80

DDE Initiation ...80

Execution of Commands...81

Procomm Plus as a Host ..81

Procomm Plus as a Client ..84

Exercise Source Codes ...87

Exercise 2a...87

Exercise 2b...88

Exercise 3a...88

Exercise 3b...89

Exercise 3c ...90

Exercise 3d...91

Exercise 3e...91

Exercise 3f..92

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 55 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Exercise 3g .. 93

Exercise 4a .. 94

Exercise 4b .. 95

Exercise 4c .. 96

Exercise 4d .. 98

Exercise 5a .. 101

Exercise 5b .. 103

Exercise 6a .. 106

Exercise 6b .. 109

Exercise 7a .. 110

Exercise 8a .. 111

Exercise 9a .. 113

Index ... 115

 PPaaggee 66 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 77 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Introduction

If you’ve called an on-line service, host system or BBS before, you’ve
probably found yourself performing many repetitive tasks. For instance,
each day, you may connect to a host system, log on with your ID and
password, read any new electronic mail you’ve received, upload a data
file and log off. Although this example session is quite simple, it can be
tedious – why not let Procomm Plus do it for you, automatically?

An ASPECT script file is a simple ASCII file you create containing
commands to be executed by Procomm Plus. In our example above, you
could write a script that would call or connect to your host and perform the
same functions, just as if you were entering them at the keyboard. To run
the script, you’d select the script name from the Action Bar and click on
the Run Script icon.

Other applications for scripts include:

• If you are working in a doctor’s office that routinely transfers medical
information and claims to insurance carriers, an ASPECT script can
easily handle this task for you.

• You could create a script for a non-programmer that downloads a
database file from the home office every morning and renames the file
with today’s date.

• It would be easy to write a procedure that uploads the day’s sales and
orders to a remote computer.

• You could connect to a computer-controlled instrument and start a
capture file to log the data as it scrolls across the screen.

 PPaaggee 88 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

About This Manual

Audience

This manual is intended for a user with some experience in programming.
The programming may be in ASPECT or some other language. It is
important that the user have knowledge of program structure, common
elements and debugging.

Commands and Syntax

We will cover a fraction of the total ASPECT commands in this manual. It
is intended to give you training in these commands and also to teach you
how to use the available resources. Most of the commands that are
included in this manual are given with abbreviated syntax and a small
amount of Help information. Our goal here is to make you aware of the
types of commands that are available for various circumstances and why
you would want to choose one or the other. It is expected that you will
refer to the on-line Help included in Procomm Plus for specific syntax.
The ASPECT Script User’s Guide is another resource of information; this
book is available for purchase from Symantec.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 99 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Chapter 1 - General Scripting
Conventions

ASPECT Editor

The script files are text files with no special formatting rules. They could
be created by any text editor but the ASPECT editor has features that
make scripting easier.

Help

All of the documentation for ASPECT is available on-line. It is arranged
by several groupings:

• alphabetical

• functional

• related topics

In addition, context sensitive help is accessible by right clicking on any
command. The Help screen will jump right to the page for that command.

Most Help screens for a specific command have a Related Topics button
at the top and a group of See Also commands listed at the bottom. This is
a very good place to start looking for more information.

Automatic Indent

The spacing of a command is not critical; it doesn’t need to start in any
particular column. However, in structured programming, it is easier to
read a program if the various levels are indented. The Editor will
automatically start each line at the column the line above started; then
you can use Tab or Backspace to move in or out a level. Thus, Example

 PPaaggee 1100 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

1 is much easier to read than Example 2. Both are acceptable to the
compiler.

Proc main
 string myname

 fopen 0 “name.txt” READ TEXT
 fgets 0 myname
 if myname == “Kay”
 usermsg “This is my file”
 endif
 fclose 0

endproc

Example 1 – Indented script source code

Proc main
string myname
fopen 0 “name.txt” READ TEXT
fgets 0 myname
if myname == “Kay”
usermsg “This is my file”
endif
fclose 0
endproc

Example 2 – Non-indented script source code

Variable Names

Variable names must start with a letter and be unique within the first 30
characters. They can contain letters, numbers or underscores but no
other symbols or spaces. Variable names are not case sensitive; you
may use upper case to improve readability. Thus, UserNameInAtlanta is
much easier to read than usernameinatlanta but they are equivalent to the
compiler.

The Reserved names are listed in the Help files under Contents |
ASPECT Reserved Words. You should not use any of these names for
personal variable names.

Conditional Commands

A program in any structured programming language relies heavily on
special keywords that control the flow of events. While many logon scripts

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 1111 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

are linear, scripts that are more complex perform activities based on
conditions.

To understand conditionals that control program flow, it’s necessary to
understand the meaning of the terms "true" and "false." For the purposes
of ASPECT, "true" means "non-zero" while "false" represents a value of
zero. The expression "5 == 4" is the same as zero, or false in ASPECT,
while "5 == 5" is the same as a non-zero, or true value. Be careful of the
logical notation. “Year==Month” may test false but “Year=Month” is
always true because you just set Year equal to Month.

Logical Operators

Symbol Operation

< Less Than

<= Less Than or Equal to

> Greater Than

>= Greater Than or Equal to

== Equal to

!= Not Equal to

Simple Conditionals

The simplest type of conditional expression uses the if ... endif construct:

proc main
 integer Test ; Declare variable named "Test" of integer type
 . . ; Some code that manipulates the value of Test.
 .
 if Test == 5 ; See if the variable now equals 5.
 call DoThis ; If true, call a particular procedure.
 endif ; End of the conditional.
endproc

Although the if ... endif construct can be used in complex decision trees,
at its basic level it is a simple question:

 PPaaggee 1122 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

 if Test == 5 ; If Test equals value 5, THEN
 call DoThis ; ... call our procedure.
 endif ; End of question

More complex variants on the if ... endif construct include if ... else ...
endif and if ... elseif ... endif.

Success/Failure

Many of the ASPECT commands set the Success/Failure flags depending
on the outcome of their action. The commands that use this feature are
marked with SF in a red and white circle at the upper left corner of the
Help window. This information can be used in several ways in your
script. The simplest way is to test to see if Success is TRUE.

Fopen 1 “myfile.txt” READ TEXT
If Success
 readfile () ;Call a procedure to read the file
else
 usermsg “Could not open myfile.txt”
endif

Loops

Many of the sample scripts in this tutorial include some variation of this
script fragment:

proc main
 LOOPTEST = 1
 ; .
 ; . ;Other code here.
 ; .
 while LOOPTEST ; Loop while true.
 endwhile
endproc

These lines cause the program to process indefinitely, until it is halted or
until Procomm Plus is terminated. Why? While is a loop command. As
long as the expression after the keyword while evaluates to non-zero, or
true, everything between the while and endwhile executes repeatedly.
When the expression after while evaluates to false, or 0, execution jumps

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 1133 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

to the line after the while ... endwhile construct. Since the expression "1"
is true, the while LOOPTEST / endwhile lines of code above loop
endlessly. If you sandwich a transmit command between the lines, the
script will transmit the same string over and over again:

while LOOPTEST
 transmit "hi" ; This would look like hihihihihihihihihi...
endwhile

Quite often, the code in a while ... endwhile loop changes the value of
the expression from true to false, causing the loop to execute a specific
number of times:

proc main
 integer Counter = 0 ; Initialize the variable "Counter" to 0.

 while Counter != 5 ; This means "while counter does *not* equal 5".
 Counter++ ; Increment the value of counter (add 1 to it)
 transmit "hi" ; and transmit "hi".
 endwhile
 transmit "^M" ; Send a carriage return
 transmit "bye" ; and then the word "bye".
endproc

In this example, the starting value of Counter is 0. The while expression
evaluates to true, since Counter does not equal 5, and so the code inside
the loop is executed. Counter is incremented to 1 and the word "hi" is
transmitted. Execution loops back to the while statement. The variable
Counter equals 1 now, which is still not 5, so the code inside the loop is
executed again. This looping process continues until the value of Counter
is 5. When the value of Counter is 5, the expression after the while
keyword becomes false and execution jumps past the loop to the next line
of the script. Thus, what is transmitted by this fragment of code looks like
this:

hihihihihi

bye

You can also nest loops, making loops within loops:

proc main
 integer Test1 = 1 ; Declare integer variable "Test1".
 integer Test2 = 1 ; Notice that we can initialize a variable here.

 while test1 != 5 ; Outer loop.
 while test2 < 10 ; Inner loop. Notice use of less than

 PPaaggee 1144 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

 test2 ++ ; Increment test2
 ; . ; More code.
 ; .
 endwhile ; End of inner loop.
 test1 ++ ; Increment test1

 endwhile ; End of outer loop.
endproc

When

Microsoft Windows is an event-driven environment. This means that
programs perform tasks when specific events occur. For example,
Windows tells programs when they should draw graphics on the screen,
when someone clicks on a button or icon and even when they are allowed
to use a device on your system. ASPECT takes advantage of this event-
driven design with the when command.

When allows your script to watch for events while it’s performing other
activities. For example, suppose that you’re connected to a host system
that displays a prompt after every 24 lines of information and waits for you
to press <Enter>. You want Procomm Plus to press <Enter> for you when
this event occurs. We can accomplish this easily with the when command.
Examine the script example below:

proc main
 ; Declare a when command that watches for the prompt and
 ; calls another procedure to send a carriage return.
 when TARGET 0 " Press Enter " call PressEnter
 while $CARRIER ; Loop while connected.
 yield ; Yield script processing time
 endwhile
 when TARGET 0 CLEAR ; Clear the when clause.
endproc

proc PressEnter
 transmit "^M" ; Send a carriage return.
endproc

In our example, we declare a when command to watch for the prompt
from the remote system. We also suspend the script while we’re on-line or
connected using the while ... endwhile loop. This puts the script into an
endless loop that we get out of only when we hang up. Notice that we
use the TARGET option to tell ASPECT what type of event to watch for. In
this case, TARGET specifies that we’re expecting to receive a text string.
The number following the TARGET option is the index of this when

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 1155 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

clause. Any time Procomm receives the string "Press Enter" our script file
sends a carriage return.

There are many events besides when TARGETs that you can watch for
in your script files. You can watch for dialog events, key presses, user
exits or even sense when incoming information has stopped. Let’s take a
look at each of the when commands that you can use in your script files:

when DIALOG 0 call ProcessEvent

This is an example of using the when command to check for dialog
events. When you click on an object in the dialog with an id of 0, your
script calls the procedure named ProcessEvent. ProcessEvent reads and
evaluates the value returned by the dlgevent command.

Let’s take a look at a when clause that watches for a key press:

when ISKEY 0 ’A’ call AKeyPressed

This when clause tells ASPECT to call the procedure named
AKeyPressed each time you press the "A" key on your keyboard. As with
when TARGETs, an index is used to differentiate multiple when ISKEY
clauses. Use the index to selectively clear your when ISKEY clauses. ‘A’
is a constant that the compiler replaces with the value of the "A" key when
the script is compiled. ’A’ can be replaced by other virtual key values.

when QUIET 10 call Done

When QUIET allows a script to call a procedure when the
communications line is quiet for a specified number of seconds. In the line
above, we’re telling our script file to call the procedure called Done when
the line is quiet for 10 seconds. If data is received during each 10 second
period, Done is never called. If no data is received for over 10 seconds,
Done is called.

On the other hand, we may want to call a procedure in timed intervals.
Suppose we need a script that calls a procedure every 30 seconds and
sends a space character. Our script file might contain the following line:

when ELAPSED 30 call SendSpace

 PPaaggee 1166 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

In this example, our script will call the SendSpace procedure every 30
seconds. The SendSpace procedure is used to transmit the space
character.

Finally, when clauses may be used to sense when users try to exit our
script files. Look at the following line:

when USEREXIT call CleanUp

USEREXIT tells ASPECT that you want to call the specified procedure
every time the Stop Script icon is selected, or when the user selects Stop
Script from the Scripts menu. We could use CleanUp to perform final
operations to insure that our script exits properly, restoring Setup options
that it changed or closing files. It’s important to remember that you must
use the exit or quit command to stop your script if you have created a
when USEREXIT clause. Otherwise, the script keeps running although
the user tried to stop it!

Switch

This is a very powerful command that simplifies multiple decisions. The
same results could be obtained with if…elseif…elseif…elseif……..
commands which quickly become convoluted and hard to follow. In the
following example, Alpha is evaluated. If alpha equals 0, we go to that
case and display that user message; if Alpha is 1 then we display the
next user message. This can continue for a large number of cases. The
programming between case and endcase can be anything from a simple
user message to calling a procedure to anything else you might want.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 1177 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

proc main
 integer Alpha = 2 ; Integer to check in switch

 switch Alpha ; Find value of variable and display corresponding message
 case 0
 usermsg "Alpha = 0"
 endcase
 case 1
 usermsg "Alpha = 1"
 endcase
 case 2
 usermsg "Alpha = 2"
 endcase
 endswitch
endproc

Parameter Passing

Parameters can be passed to other procedures in a number of ways,
some of which are easier than others. This simplest method to implement
is to use Global Variables so that no extra coding is required. Global
Variables are declared before the Main procedure and then are available
in all procedures.

string myname

proc main
 NameInput ()
 usermsg myname
endproc

proc NameInput
 termputs “Enter your name”
 termreads myname
endproc

In this example, because myname is Global, the value that is read in the
proc NameInput is written in proc main with no visible passing of
parameters. This is easy to write but it may be hard to maintain because
any number of procedures may use and change the Global Variable. If
the program isn’t well documented, it is too easy to lose track of what is
happening.

A more controlled method is to pass parameters by reference. Using this
technique, the value of the parameters is passed to the next procedure.
After the second procedure is finished, the current value of the
parameters is passed back to the calling procedure.

 PPaaggee 1188 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

proc main
 string yourname

 yourname = “Marlena Evans”
 InputName (%yourname)
 usermsg “yourname”
endproc

proc InputName
 param string yrname
 termwrites “Enter your name”
 termreads yrname
endproc

In this example, the letters that were entered for the yrname would be
passed back to proc main and written out in the user message for
yourname. The parameters that are passed by reference can be given a
different name in the called procedure although this can lead to
confusion.

The format for calling a procedure can be in several different forms. The
following have identical behaviors:

NameInput (%yourname)
call NameInput with %yourname

You can use whichever one you are most comfortable with. The first
sample is preferred for most applications with the major exception being a
WHEN statement which requires the second.

Arrays

Arrays are defined and used much like arrays in other programming
languages. There may be up to 12 dimensions in an array. Arrays may
be local or global.

integer StudentName[5]
integer mynumbers[3][3][3]
string ClassNames[12]

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 1199 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

The array StudentName contains 5 elements which are numbered
StudentName[0], StudentName[1], StudentName[2], StudentName[3] and
StudentName[4]. The number in brackets in the declaration is the number
of elements in the array, not the top value. Remember that string
variables are always 256 characters long so arrays of string variables can
get very large very quickly.

Compiling and Debugging

Here is an example of a program with an error:

proc main
 string MyName

 termreads YourName
 usermsg “Your name is %s” YourName

endproc

When we compile this, we get the following screen:

This lists the syntax and spelling errors and is relatively simple to follow to
get the compile errors corrected. A general Rule of Thumb is to start at
the top and correct all the errors you understand. The next time you
compile, you might find that you have also fixed some of the errors that
didn’t understand. You might have to compile and fix several times to get
all the compile errors fixed.

 PPaaggee 2200 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

The compile errors are usually simple to locate and fix. The more difficult
errors are the logic errors. We have a Debug tool that simplifies working
on logic errors. To turn this on, start at Tools on the top-line menu.
Choose Scripts and then Compile/Edit.

This brings up the Compile/Edit screen.

Now select the Compile Options…

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 2211 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Put a check in the Compile for Debug checkbox. Now you will get a
Debug box when a compile error occurs or when you add a breakpoint
command.

We can use the following script to see how debug will help us track down
logic errors.

proc main
 integer Peanuts[5]
 integer counter = 0

 while counter !> 6
 Peanuts[counter] = counter
 usermsg “counter is %i” counter

 counter ++
 endwhile

endproc

Executing this program without Debug gives the following error message
after displaying the user message of “counter is 4”.

This is not terribly useful!

 PPaaggee 2222 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Executing this same program with the Debug option checked will bring up
this window

Since the error we are getting is Value out of Range, we can pull up the
suspected variable Counter then click on the Step button to step through
the script.

 Now we see that Counter goes as high as 6 and that is clearly out of
bound on the array Peanuts[5]. Of course, this is much more useful and
necessary on a larger script that is more complicated.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 2233 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Chapter 2 - Standard Dialogue
Boxes

Very few scripts that people write in ASPECT run invisibly. Most scripts
require some user input and then write some kind of response to the
screen. Later we will learn how to write sophisticated dialogue windows
but in order to get started we need some simple techniques. ASPECT
provides us with four commands for this purpose:

• sdlginput -- input

• sdlgmsgbox – message output

• sdlgfopen -- file open

• sdlgsaveas – file save

User Input

sdlginput title prompt StrVar [MASKED] [DEFAULT]

The Title and the Prompt appear on the input window. Whatever the user
types will be returned in the StrVar. If the input is something personal,
using the MASKED switch will make whatever the user types in appear as
asterisks. If the DEFAULT switch is used, the current value of StrVar will
appear in the window and the user can accept it by pressing Enter.

 PPaaggee 2244 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Message Box

sdlgmsgbox title string icon button intvar [integer] [BEEP]

The Title and String appear in the window. The String may be a user
prompt, a warning or a question. The choice of icons is information,
exclamation, question, stop or none.

The button configuration is one or more of the following: OK, Cancel,
Yes, No, Abort, Retry or Ignore. You can tell which button the user
clicked on because the integer relating to the button is returned in the
intvar. The integer declares which of the three possible buttons is the
default button. You may choose to have the computer beep when the
message box opens.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 2255 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Example of Standard Dialog Box Script

proc main

string InputString ;what the user types in
integer UserMsgButton ;which button is clicked

;input box for the user to enter his name
sdlginput "Names" "Please enter your name" InputString

;if the user clicked on the Cancel button, exit
if Failure

exit
endif

;message box to report what the user typed
;INFORMATION -- a lower-case "i" will be displayed
;YESNOCANCEL -- 3 buttons (yes, no, cancel) will be displayed
;UserMsgButton -- the integer relating to which button was clicked

sdlgmsgbox "Input Name" InputString INFORMATION YESNOCANCEL UserMsgButton

;take different actions depending on which button was clicked
switch UserMsgButton

case 2
exit

endcase
case 6

usermsg "Thank you for following instructions"
exit

endcase
case 7

usermsg "You need to practice your typing!"
exit

endcase
endswitch

endproc

File Open

sdlgfopen title filespec {SINGLE strvar} | {MULTIPLE filespec}

This opens a standard Windows File Open dialogue box with the Title on
the title bar and displaying files as specified in FileSpec.

 PPaaggee 2266 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

The command can specify whether the result is a single file whose name
is returned in the StrVar or a group of files that are listed in the file named
by the FileSpec.

File Save

sdlgsaveas title filespec strvar

This command opens a standard Windows File Save As dialogue box with
the Title on the title bar and displaying files as specified in FileSpec. The
file name that the user chose is returned in the StrVar.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 2277 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Exercise 2a

@ Create a script to display a standard message box with 3 buttons:
yes, no and cancel. If the user presses "YES", then the second
message box says "You pressed YES". If the user presses "NO",
the second message box says "You pressed NO". If the user
presses "CANCEL", the script exits immediately.

Exercise 2b

@ Create a script to display a standard input box asking for a general
directory specification. Using that directory specification, open a
standard file listing box and let the user choose one file. Report the
name of the file that was chosen.

 PPaaggee 2288 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Chapter 3 - String Manipulations

Procomm Plus ASPECT is a powerful programming language with many
uses. One of the most common uses is to create some sort of user
interface that simplifies regular, repeated tasks. This requires asking for
input from the user, parsing it then taking some action. Another common
use is to process information from a file. Both of these tasks involve
string manipulations and Procomm Plus has many commands to make
this easy.

The easiest way to locate the string commands is to go to ASPECT Help |
Contents | ASPECT Command Reference | Commands Listed by Function
| String Commands. There are 33 commands listed there. We will go
through a few of the most often used.

Compare

strcmp string1 string2 {intvar}

This command performs a case-sensitive comparison on two strings, for
the length of the shorter string. If specified, intvar will be set to 0 if the
strings are identical. It will be greater than 0 if the first string is
lexicographically greater than the second and less than 0 if the first string
is lexicographically less than the second.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 2299 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Sample code to demonstrate the strcmp command:

proc main

string AllowedName = "Joyce" ;Name of the one person to be allowed
string InputName ;user input name

 ;request the user input name
sdlginput "Name Input" "Please enter your name" InputName
 ;compare it to the allowed person
strcmp AllowedName INputName
 ;report success/failure to the user
if Success

usermsg "You have my permission"
else

usermsg "You are not the allowed person"
endif

endproc

Related or similar commands:

• stricmp – case-insensitive comparison

• strncmp – case-sensitive comparison for a specified number of
characters

• strnicmp – case-insensitive comparison for a specified number of
characters

• rstrcmp -- compares the contents of two strings up to the specified
length

Exercise 3a

@ Input 2 strings then test to see if they are identical. The output
should report if they are identical or not.

 PPaaggee 3300 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Search
strfind string character intvar [matchcase]

This command searches for the first occurrence of the specified text in a
given string, returning SUCCESS or FAILURE depending on the outcome.
Intvar is an integer variable that if specified, will contain the zero-based
index within the string where the first character of the search string occurs
or -1 if the search string is not contained within the string.

Sample script using strfind, strcmp and sdlginput

Notice that strcmp does an exact match in the initial characters of the
strings while strfind searches anywhere in the target string for a match.

proc main

 ;Name of the people to be allowed
string AllowedNames = "Joyce, Dave, Becky, Marsha, Nancy"
 ;password
string SecretPassWord = "Glenda"
 ;user input name and password
string InputName
string InputPassword

 ;request the user input name
sdlginput "Name Input" "Please enter your name" InputName
 ;compare it to the allowed persons
strfind AllowedNames InputName
 ;if found in the list then ask for password
if Success
 ;user input masked because it is a password

sdlginput "Password Input" "Please enter the password" InputPassword MASKED
 ;compare to the stored password
strcmp SecretPassword InputPassword
 ;report if the password matched
if Success

usermsg "You have permission"
else

usermsg "You typed in the wrong password"
endif

else
 ;If not in the list, then exit

usermsg "You are not on the list of allowed persons"
endif

endproc

Related or similar commands:

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 3311 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

• strchr – Searches for the first occurrence of a character is a string

• strrchr – Searches for the last occurrence of a character in a string

• strsearch – searches for the number of occurrences of a string in
another string

Exercise 3b

@ Input a list of names separated by blanks or commas. Report
whether or not the list contains a “J”.

Replace or Insert

strreplace strvar string1 string2 [integer] [MATCHCASE]

This command searches a string variable for a specific character or
pattern of characters, replacing the target character or character pattern
with another string. It will replace every occurrence unless the integer is
specified.

Related or similar commands:

• strinsert – inserts a string into another string at a specified position.

• strupdt – overwrites a string with another string at a specified position

• strdelete – removes characters from a string

• substr – copies the indicated number of characters from a string,
beginning at a specified position

Sample of code using strreplace and $DATE

The object of this piece of code is to use the system date ($DATE) as the
name of the capture file. We can’t use $DATE directly because the
format is MM/DD/YY and the slashes aren’t allowed in a file name. Se we

 PPaaggee 3322 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

can use a strreplace command to replace each “/” with a “-“ and the file
name complies with naming conventions.

proc main

string Filename

FileName = $DATE
strreplace FileName "/" "-"
strcat FileName ".cap"
set capture file FileName
…
…

Exercise 3c

@ Input a list of names. Check to see if there are any J’s in the list
and replace them with QD’s. Report the resulting list.

Parsing

strextract strvar string1 string2 integer

This command extracts a string from a list of elements where string2 is
the delimiter. This is useful for parsing comma-delimited files like the
generic import files for the Connection Directory. The integer is used to
denote which element. The numbering of the elements starts with 0.

Sample script using strextract

This sample initializes the string variable LunchMenu with the choices.
This is to simplify the scripting process but not a very authentic

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 3333 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

demonstration. We check for nullstr to see if we are at the end of the list.
The increment (++) function is used; this is the same as

Counter = Counter + 1

that we would have seen in earlier scripting. Note that Counter is
initialized to 0, not 1.

proc main

 ;menu list. In reality, this would be input
string LunchMenu = "Soup,Nuts,Pie,Cake,Soda,Iced Tea"
 ;holder for each individual item
string LunchItem
 ;counter to step through the items
integer Counter = 0

 ;stay in the extraction loop until we have all of the items
while 1
 ;extract each item in turm

strextract LunchItem LunchMenu "," Counter
 ;end of list so exit the loop
if nullstr LunchItem

exitwhile
endif
 ;formatted user message for each item
usermsg "Item Number %i is %s" Counter LunchItem
 ;increment the counter
Counter++

endwhile

endproc

Related or Similar commands:

• strtok – extracts a string from a list of elements then removes that
element from the string.

Exercise 3d

@ Input a comma-delimited list of names. Output the 4th name in the
list.

 PPaaggee 3344 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Miscellaneous

strlen string intvar

This command returns the length of a null-terminated string into the intvar.

strcat string1 string2

This command concatenates string 2 onto string 1 and stores the results
in string 1.

Formatting

strfmt strvar formatstr [arglist]

Creates a formatted string using a template, and modifies it with string or
numeric variables. This is a good way to get numerical values into a
string before writing it to the screen.

proc main
 string Address, AddrStreet
 integer AddrNumber

 AddrNumber = 1829
 AddrStreet = “N. Monroe”
 strfmt Address “My address is %i %s” AddrNumber AddrStreet
 usermsg Address

endproc

The user message would be “My address is 1829 N. Monroe”.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 3355 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Format Specifiers

• d or i The parameter is converted to signed decimal notation.

• s The string parameter is displayed up to the first null character or
until the precision value is reached.

• f The parameter is output in the form [-]dddd.dddd, where dddd is
one or more decimal digits. The number of digits displayed after the
decimal point is determined by the precision specification; for
example, %7.3f specifies output with 3 digits after the decimal point
and a maximum of 7 total digits. The default precision is 2. A minus
sign is displayed if the value is less than zero, but a plus sign is
displayed only if called for with the "+" flag.

• e The parameter is output in the form [-]d.dddd e sign ddd, where d
is a decimal digit, dddd is one or more decimal digits, ddd is three
decimal digits, and the sign is "+" or "-" (scientific notation).

• c The integer parameter is output as a single ASCII character.

• u The parameter is output as an unsigned decimal number.

• o The parameter is output in octal notation.

• x The parameter is output in hexadecimal notation using the
characters 0-9 and a-f.

• X The parameter is output in hexadecimal notation using the
characters 0-9 and A-F.

• l A lower case "L" may be used before the d, i, o ,x, or X format
specifiers to specify that the corresponding argument is a long value.

• E Similar to "e", above, except that this type uses a capital E instead
of lower case "e" to prefix the exponent.

• g The parameter is output in f or e format, as appropriate. If the e
conversion would yield an exponent greater than -4 or less than the
specified precision, the parameter value is output in f format instead.
The generated text has no trailing zeros after the decimal point and
includes a decimal point only if the result is not a whole number or if
you specify the "#" flag.

• G Same as g above, except the E output format is used instead of the
e format.

 PPaaggee 3366 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Escape sequences

Another ingredient in formatting is non-printing characters, such as
Carriage Return and Line Feed. These can make the output easier to
read. They are accomplished with the use of the backtick, `, in
combination with a letter. The backtick is usually the key just to the left of
the 1 key. All the possibilities for non-printing characters are in Help
under Escape Sequences.

`n New line/line feed

`r Carriage return

`f Page feed

`" Quote

Exercise 3e

@ Input 2 strings. Output the strings and their lengths individually.
Concatenate them and report the combined string and its length.

Conversions to and from Numbers
User input is always in character format and needs to be converted to
numbers before calculating. Other times you might want to convert
numbers to characters without using strfmt.

atoi string intvar

This command will convert the string variable to an integer and store it in
intvar.

Related or Similar Commands

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 3377 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

• atol – converts a string variable to a long variable

• atof – converts a string variable to a floating point value

• itoa – converts an integer variable to a character string

• ltoa – converts a long variable to a character string

• ftoa – converts a floating point variable to a character string

• numtostr – converts a number to a string; the numerical base
(2,8,10,16,etc.) can be specified

• strtonum – converts a string to a number: the numerical base can be
specified

Exercise 3f

@ Input 3 numbers. Add them together and report the sum.

Exercise 3g

@ Input 3 floating point numbers. Report the average to 2 decimals.

 PPaaggee 3388 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Chapter 4 - Dialog Boxes

Users are so spoiled! They expect only a graphical user interface even in
a personal script. The GUI is handy for walking a user through a
particular number of steps. It can also be used for displaying information
in easily readable form.

Dialog Editor

Procomm Plus provides a user-friendly dialog editor with a graphical
interface. You can design your dialog boxes using simple Drag and Drop
techniques. You can insert the newly designed dialog box in your script
with Cut and Paste.

Let’s start designing a dialog box and see how it progresses.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 3399 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Opening the Dialog Box Editor will give you a generic window to use as a
starting point. You can change the size on this to the approximate size
that you want. You can also double-click on any element to bring up a
Properties window.

You can define the caption and make some style choices such as: center
dialog box, disable close, update variables on event and others.

Now you are ready to add components to your window. This shows the
entire list. We will choose a few of them.

 PPaaggee 4400 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

An edit box is where users will enter information. It can be either a single-
or a multi-line box. It will support highlight, copy, paste and other normal
Windows edit functions.

Text can be added anywhere in the dialog box.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 4411 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Then you can add one or two Check Boxes. And draw a Group Box
around them.

This is the total result. Now you can do Ctrl-C to copy the code and then
go to the PW Editor to paste in the code. The code direct from the dialog
Box Editor is below.

dialogbox 0 8 20 264 169 2 "Caption"
 editbox 1 62 26 104 25 Var1
 text 3 56 10 70 12 "Enter your name here" left
 checkbox 4 31 80 42 11 "Label" IntVar1
 checkbox 5 30 98 42 11 "Label" IntVar2
 groupbox 6 19 76 94 43 "Label"
enddialog

Note the similarities of the dialog box commands. The first number is the
ID number for that element. The next 4 numbers are the XY coordinates
for the upper left corner, the X-size and the Y-size. That is followed by
label information and variable name, if applicable. In the editor, you can
make minor adjustments to the numbers to align or space elements in a
particular way. You can cut and paste in both directions between the PW
editor and the dialog box editor. You can also change the generic
variable names to the ones you are using in your script; this information
will be carried in the cuts and pastes. Arrays are not supported in the
dialog box editor so array information will have to be typed in again.

 PPaaggee 4422 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Layout Assistance

Use Control-right click to select a group of elements. Using a
combination of these aids is an easy way to improve the look of your
script. For example, if you have a row of push buttons along the bottom
of your dialog box you want them to look well planned. You can quickly
align them in a straight row, make them all the same height and evenly
spaced.

Align Controls

The group can be aligned either right, left, top or bottom. Be careful using
this because if you select two elements that are horizontally separated
and click on left align, they will end up on top of one another!

Space Evenly

This can be used to easily arrange small multiple elements like push
buttons, radio buttons or checkboxes. Elements can be even horizontally
or vertically.

Make Same Size

This is an easy way to get the small elements similar. They can be the
same width, height or both.

Tab Order

This means that when you press the Tab, you go to the next field. Users
expect a predictable, logical order. The order that you create elements
will be the default Tab Order. You can change the tab order later with this
choice.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 4433 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Test

Using this option, you can see the dialog box as it would appear rather
than with the editing marks.

Dialog Box Styles

dialogbox id left top width height style [title]

The Dialog Box command is similar to other dialog commands because it
starts with an id number followed by left, top, width and height. The id
must be unique if you are going to use it to identify the window. The title
is used only if the style requires it.

The style of the Dialog Box is determined by a sum of numbers that are
discussed below. For a full description of these styles, see the Help entry
for dialogbox. There is a script on the supplementary diskette
(DialogBoxStyles.was) that demonstrates many of these styles.

• 0 A normal modal dialog box. A modal dialog box prevents the user
from accessing its owner.

• 1 A dialog box centered with respect to its parent.

• 2 A moveable dialog box with caption.

• 4 A modeless dialog box, which allows the user to access the dialog
box’s owner.

• 8 Trap Esc, Alt-F4 and Close events. This is used to prevent the user
from destroying the dialog box without script intervention.

• 16 Remove Close command from system menu.

• 32 Hide dialog box until shown with the dlgshow command. Hiding the
dialog box allows the script to modify, enable or disable controls
before the user sees the dialog.

• 64 Suspend script execution until the dialog box is destroyed.

 PPaaggee 4444 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

• 128 Update variables when event is read from queue. This means that
an ASPECT result variable associated with a dialog box control will
not be updated immediately when the control is accessed and
changed. Instead, the variable will be updated when the event is read
from the event queue.

Modal versus Modeless

Modal means that you can’t access the parent window while this dialog
box is displayed. Modeless means you can access it. Here is an
situation that illustrates this concept: if you have a modal dialog box
displayed in Procomm, you can’t click on the Send File button on the
Action Bar. If the dialog box is modeless, you can click on the button and
send a file while the dialog box is displayed. There are times when you
want to restrict the user’s actions so you would use a modal dialog box. If
the user were to remain free to do other things, you would use a
modeless dialog box.

Dialog Box Style Examples

Now, let’s consider some examples. Functioning dialog boxes with most
of the possible combinations may be created with the script
DialogBoxStyles.was that is on the supplementary diskette.

64 + 2 + 1 + 0= 67

This creates a dialog box that suspends the script (64) as long as the
dialog box is displayed. The dialog box is centered (1) with respect to its
parent and it is movable, with a caption (2). It is modal (0) so it captures
the focus and won’t allow you to access its parent.

16 + 8 + 4 + 2 = 30

The script is not suspended (<64) so you will need a WHILE loop to keep
the script cycling while the dialog box is displayed. The user is prevented
from exiting the dialog box in unplanned ways: the exit methods are
trapped (8) so nothing happens when the user tries to exit and, further,
the Close is removed from the system menu (16). The dialog box is
modeless (4), which means the parent is accessible. The dialog box is
movable with a title bar and a caption (2).

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 4455 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

64 + 16 + 8 + 4 + 2 = 94

This has all the characteristics of the previous example (16 + 8 + 4 + 2)
and, in addition, the script is suspended while the dialog box is displayed
(64).

Programming with Dialog Boxes

There are several ways that I know of to program Dialog Boxes – all of
which are valid. You may know of other methods that work. You should
choose one method and stick with it for all your programming. The
requirements are to display a dialog box, allow the user to make choices,
perhaps update the dialog box based on the user-choices and then act on
the user’s choices. The dialog box may be destroyed during this process
or at the end of the script. Other dialog boxes may be displayed and go
through the process again.

Method 1

Characteristics

• Dialog Box Style is 64 or higher so the script is suspended while the
Dialog Box is displayed

• WHEN statement reacts to events in the Dialog Box

• Dialog Box and its dlgevent-processor are in different procedures

• Uses global variables to convey Dialog Box entries to the dlgevent-
processor

string DialogBoxVariables…

proc main
when DIALOG 0 call Handler0

 DisplayDialog0 ()
endproc

proc DisplayDialog0

 dialogbox 0 x y dx dy 71 “Caption”

 PPaaggee 4466 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

 ….
 ….
 Enddialog
endproc

proc Handler0
integer Event0

 dlgevent 0 Event0

 switch Event0
 case …
 …
 …
 endcase
 case …
 …
 …
 endcase
 endswitch
endproc

Method 2

Characteristics

• Dialog Box Style is 63 or less so the script goes on to succeeding
statements

• While-loop cycles to keep the Dialog Box displayed and look for
dlgevents

• Dialog Box and its dlgevent processor are in the same procedure

• Uses local variables to communicate between the Dialog Box and the
dlgevent-processor

• One while-loop per Dialog Box

proc main

DisplayDialogBox0 ()

endproc

proc DisplayDialogBox0
string DialogBoxVariables…
integer Event0

 dialogbox 0 x y dx dy 27 “Caption”

 Enddialog

while 1
 dlgevent 0 Event0

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 4477 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

 switch Event0
 case …
 …
 …
 endcase
 case …
 …
 …
 endcase
 endswitch
endwhile

endproc

Method 3

Characteristics

• Dialog Box style is 63 or less so the script goes on to succeeding
statements

• A while-loop cycles to keep the dialog boxes displayed

• WHEN statements react to events in each dialog box

• Dialog Box and its dlgevent-processor are in different procedures

• Uses global variables to convey Dialog Box entries to the dlgevent-
processor

• One major while-loop per script

string DialogBoxVariables…

proc main
when DIALOG 0 call Handler0

DisplayDialogBox0 ()

while 1
 yield
endwhile

endproc

proc DisplayDialogBox0

 dialogbox 0 x y dx dy 27 “Caption”

 Enddialog
endproc

proc Handler0
integer Event0

 PPaaggee 4488 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

 dlgevent 0 Event0

 switch Event0
 case …
 …
 …
 endcase
 case …
 …
 …
 endcase
 endswitch

endproc

Dialog Box Events

When a user has pressed a pushbutton or entered data in an edit box,
your program needs to know about it. In addition, your program needs to
know which of several events occurred so that you can take the proper
action. There is a common set of commands that can accomplish these
goals: when dialog, dlgevent and switch-case.

When Dialog

when dialog id call procedure

When an event happens in the dialog with the specified id, the procedure
that is named will be called to handle the event. This when can be placed
at the beginning of the Proc Main or in the subprocedure that constructs
the dialogue window. Once it has been executed, it will be in effect until
the when is canceled or the script ends. dlgevent must be used to clear
the targeted dialog’s event queue, or the when will fire repeatedly.

dlgevent

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 4499 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

dlgevent id intvar

This usually appears near the top of the called subprocedure. The id is
the id of the dialogue window. The returned intvar is the id of the
element in the dialog box where the event occurred. When dlgevent
accesses the event, the event queue is reset. There are other
parameters for this command that allow you to Flush the event queue and
Save or delete the events.

Switch – Case

This combination of commands allows you to react to specific events in an
easily programmed manner. The command is discussed in more detail in
Chapter 1.

Event Handling Example

proc EventDialog0
 integer event0

 dlgevent 0 event0

 switch event0
 case 0
 ;Do this if something happened to element 0
 endcase
 case 2
 ;Do this if something happened to element 2
 endcase
 endswitch
endproc

Common Dialog Box Elements

In addition to the Source Codes for the Exercises that are given in
Appendix A, there are some well-commented examples of dialog box

 PPaaggee 5500 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

scripting included on the supplementary diskette
(DialogBoxControls.was).

dialogbox and Related Commands

dialogbox id left top width height style [title] [CALL name] [PARENT id]

…

enddialog

This pair of commands describes the dialog box and will make it appear.
Every element listed between dialogbox and enddialog will appear in
this box and be related to it. The dialogbox command has many options
that are explained in the Help listing. The style for a normal movable
window with a caption is 2. The Call and Parent modifiers are optional.

dlgdestroy

This command destroys the box.

dlgupdate id ctrlid [ctrlid]

dlgsave id ctrlid [ctrlid]

This pair of commands processes the contents of the elements in a dialog
box without closing the dialog box. The dlgupdate command updates the
contents of edit boxes, list selections, radio buttons and other elements.
The dlgsave command saves the contents of an element into its
associated variable or file. These contents would routinely be saved
when the dialog box is closed.

editbox

editbox id left top width height strvar

[strlength][MASKED][MULTILINE]

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 5511 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

feditbox id left top width height filespec [HSCROLL]

The editbox command has the first 5 normal parameters followed by the
string variable that will hold the contents of the edit box. The string length
can be specified if you are asking for input like a telephone number,
social security number or password that has a certain length. If the input
is masked then all that the user sees is asterisks; this is mostly used for
entry of passwords. The edit box may be multi-lined so that it wraps
within the box. A single-lined box may have information beyond the edge
of the box and the user would have to scroll to see it.

If the contents of the edit box are greater that 256 characters, then the
feditbox command will use a file for storage.

text and ftext

text id left top width height label LEFT | RIGHT | CENTER

ftext id left top width height filespec [{OFFSET fileoffset [LENGTH
filelength]} | DYNAMIC] [HSCROLL]

These commands display text in the dialog box. It may be a variable,
specific text or the contents of a file. The text may be positioned within
the text box.

 PPaaggee 5522 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

checkbox

checkbox id left top width height label intvar

The label is displayed to the right of the checkbox. To specify a keyboard
accelerator for the checkbox, simply include an ampersand (&) in front of
the desired character. Intvar is either 1 or 0 for checked or unchecked.
You can specify the initial setting by defining intvar then check the value
of intvar later to see if the box is checked or not.

pushbutton

pushbutton id left top width height label [OK | CANCEL] [DEFAULT]

This command places a standard pushbutton control within dialog. The
user may click on this control to indicate a choice. The difference
between OK and CANCEL is that for OK changes made to file-related
controls will be saved to disk. DEFAULT specifies that the button is to be
selected when the Enter key is pressed and no other button has the input
focus, or when a list box, file list box, combo box, file combo box or
directory list box item is double-clicked. Note that only a single button or
icon button can be named as default in a dialog box.

radiogroup and radiobutton

radiogroup id intvar

 radiobutton id left top width height label

 radiobutton id2 left top width height label

 …

endgroup

Radio buttons can only appear within a radio group. The radio group ID
will be used to determine if a radio button event has occurred then the
radio button ID will specify which radio button.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 5533 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

listbox and flistbox

listbox id left top width height itemlist [tabstring]
SINGLE | MULTIPLE strvar [HSCROLL] [SORT]

flistbox id left top width height filespec

[OFFSET fileoffset [LENGTH filelength]]

[tabstring] {SINGLE strvar} |
{MULTIPLE filespec} [HSCROLL] [SORT]

This pair of commands displays a drop-down list box. The main
difference between them is the size of the list. The list box input is a
comma-delimited string that is limited to the standard 256 characters.
The file list box input is a file of unlimited size. You can specify whether
one or multiple choices are allowed. The information may be sorted
alphabetically. The chosen information is returned to the script in the
strvar or put into a file.

Related commands

combobox and fcombobox are similar commands except that they have
an edit box at the top of the list so the user can add things that aren’t in
the list.

dirlistbox and dirpath

dirlistbox id left top width height filespec [filetype] {MULTIPLE filespec}
|{SINGLE strvar} [dirpathid] [HSCROLL] [SORT]

dirpath id left top width height [strvar]

Together these combine to make a Standard Windows Browse box. You
can specify the path and type of files to be listed then obtain information
on which files were chosen by the user.

 PPaaggee 5544 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Exercise 4a

@ Repeat Exercise 3f but now do the input of all three numbers in the
same dialogue box.

Exercise 4b

@ Present a lunch menu to the user consisting of at least 7 items. Let
the user choose 3 items then list the choices.

Exercise 4c

@ Continue with Exercise 4b by asking the user to confirm the choices
and giving the option to make the choices again.

Exercise 4d

@ Create a dialogue box with 3 radio buttons labeled left, center and
right. Depending on the user’s choice, display a window at the left,
center or right of the screen.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 5555 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Chapter 5 - Connection Directory
The Connection Directory is a powerful part of Procomm Plus so is it only
natural that the Connection directory commands be an essential part of
ASPECT.

Set/Fetch dialentry Commands

The set/fetch dialentry commands are used to retrieve and change the
settings for specific Connection Directory entries. The set dialentry
access command allows you to select the Connection Directory entry that
these commands affect.

Set dialentry access OFF | {dialclass string}

…

dialsave

Specifies the Connection Directory entry by name and class that
subsequent set commands affect. When Connection Directory changes
are complete, the dialsave command must be issued to save them.

Fetch dialentry access intvar strvar

Fetch dialentry access returns an integer containing the type of
Connection Directory entry and the name of the specified entry in a string.
If set dialentry access is OFF, fetch the intvar is assigned to 1 (DATA)
and the strvar a null string. The intvar can have any of the values that
represent a single dialclass. For further information, you may wish to see
the dialclass command.

 PPaaggee 5566 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Set/fetch dialentry areacode string

This command specifies the area code for the selected Connection
Directory entry. This command corresponds to the Area Code edit field in
the selected Data-, Fax-, or Voice-class Connection Directory entry. Fetch
returns the entry’s area code in a string.

Set/fetch dialentry company string

This specifies the contents of the Company edit field for the selected
Connection Directory entry. Fetch returns the contents of the currently
selected Connection Directory entry’s Company edit field in a string.

Set/fetch dialentry country string

This specifies the contents of the Country edit field for the selected
Connection Directory entry. Fetch allows an optional string variable which
is assigned the dialing code for the current Country selection. This
command is valid only for Data, Fax and Voice entries.

Set/fetch dialentry dialnumberonly OFF | ON

This specifies whether Procomm Plus should dial only the Data number
for the current entry. Fetch returns a zero for OFF and a 1 for ON. This
command is valid only for Data, Fax and Voice entries.

Set/fetch dialentry longdistance OFF | ON

This specifies whether Procomm Plus 32 should always dial the current
entry as a long distance number. Fetch returns a zero for OFF and a 1
for ON. This command is valid only for Data, Fax and Voice entries.

Set dialentry phonenumber string

This specifies the phone number to use for the selected Data-, Fax-, or
Voice-class Connection Directory entry.

fetch dialentry phonenumber strvar

Fetch dialentry phonenumber returns a string containing the phone
number for the selected Connection Directory entry. This command is

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 5577 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

valid if the dialclass specified in the set/fetch dialentry access command
was either DATA, FAX, or VOICE.

Set/fetch dialentry scriptfile filename | NONE

This specifies the script file to be associated with the selected Data-,
Telnet-, FTP- or Web-class Connection Directory entry. This command
corresponds to the Connection Directory entry’s Script edit field. fetch
returns the name of the selected entry’s script filename in a string.

If the filename argument is specified, a filename extension is optional.
However, if an extension is included, it must be .wax. Set dialentry
scriptstart may be used to determine when the script file should run.

Dialing Commands

connect dialclass [GROUP] name [name...][CONNECTALL]

or

dial dialclass [GROUP] name [name...] [CONNECTALL]

These are identical commands. The more current command is connect
because Procomm Plus can make WWW, Telnet, FTP or Fax
connections. The dial command has been retained for backward
compatibility.

This command can be used to dial a single entry or a group of entries. If
CONNECTALL is specified, Procomm Plus will keep trying until it
connects to all of them. If it is not specified, any successful connection
will satisfy the command.

Exercise 5a

@ Create a dialogue window to input name, area code, fax number
and company name. Create a Connection Directory entry for this

 PPaaggee 5588 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

name. You should allow the user to choose to enter another name
or exit the program.

Exercise 5b

@ Display the first 3 names (with their companies) in the Data section
of the default Connection Directory. The user should be able to
choose one and have it dialed. After the connection is made, the
script should exit. If Procomm is unable to make a connection, the
user should be given the option to exit or dial another number.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 5599 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Chapter 6- Fax

The fax commands can be used to automate sending or managing faxes.
It is also possible to use a combination of the fax commands and dialogue
boxes to create a customized user interface that combines elements of
Fax Status and Fax Manager in one compact window.

Faxsend

faxsend {index | string | CURRENT | FIRST string1 string2} | {DIALDIR [GROUP] string}
[COVERSHEET filespec | NONE] [NOTES string] [timeval]
[SINGLE | MULTIPLE filespec [BINARY]] [MEMO filespec]

This single command covers many possibilities for sending a fax file from
a script. The first group of parameters specifies the connection and the
recipient. Either the connection, recipient and fax number are required or
else the Connection directory entry may be specified. The coversheet
and optional Note file are next in the parameter list. The fax may be
scheduled for later by giving the long integer time variable. The actual
fax consists of a single or multiple fax files that may be binary or it may be
a Memo fax.

An example script demonstrating the possibilities of this command is
found on the supplementary disk (FaxCommand.was).

The command is long, with many options. Let’s review the syntax of the
Help file. The hierarchy of the symbols is

• { | | } Choose one of the options between the {}

• {} | {} Chose one of the options from the first {}-group or the
second {}-group

 PPaaggee 6600 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

• [] [] [] Choose options from the first []-group and/or the second
[]-group and/or the third []-group. The choices must appear in order.

Thus, in the first grouping, which is {} | {}, we are asked to choose how
and to whom to send the fax.

faxsend CURRENT “Dan Hughes” “1,800-345-1515” SINGLE “c:\orders\tv.fax”

faxsend DIALDIR “Kim Parrish” SINGLE “c:\orders\silver.doc”

faxsend DIALDIR GROUP “New Hosts” SINGLE “c:\orders\congrats.txt”

The second grouping, which is [] [] [] , covers what kind of fax to
send:

[COVERSHEET filespec | NONE] [NOTES string] [timeval]
[SINGLE | MULTIPLE filespec [BINARY]] [MEMO filespec]

 So, we have a choice of Coversheet with or without a Note, the
scheduled time, whether the fax contains a single or multiple files or if the
fax is a Memo Fax. Variations of this portion of the command are:

faxsend DIALDIR “Jane Rudolph-Treacy” COVERSHEET “faxosaur.cvr” NOTES
“This is a string for the Notes Field” SINGLE “c:\orders\silver.fax”

faxsend CURRENT “Dan Wheeler” “8,1,800-345-1212” COVERSHEET NONE

faxsend DIALDIR “Kathy Levin” MEMO “c:\orders\jewels.txt”

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 6611 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

$FAXSTATUS

Sending a fax is an asynchronous process that means that the fax will
send independent of the script; the script will continue with the next
command. If the script needs to wait for the fax to complete, it is
necessary to monitor the $FAXSTATUS with a WHILE loop.

The values for $FAXSTATUS are:

0 not busy

1 busy, sending

2 busy, receiving

3 successfully sent or received

4 unsuccessfully sent or received

iTemp = 1 ;Set iTemp value to 1 (for loop.)
 faxsend FIRST "SYMANTEC" "(573) 555-4321" SINGLE FileName
 while iTemp <= 1 ;While faxing is going on.
 iTemp = $FAXSTATUS ;Store value in $FAXSTATUS in iTemp
 yield ;Yield processor time.
 endwhile
 if iTemp == 3 ;Test the value of iTemp for success
 usermsg "Fax successfully sent."
 else ;or failure of fax
 errormsg "Fax transfer failed!."
 endif

The reason for writing the WHILE-loop this way is so that we can
determine if the fax was successful or not. Once $FAXSTATUS is set to 3
(successful) or 4 (failed) within the WHILE loop and it is accessed by the
script, $FAXSTATUS is set back to zero. This is why it is important to use
the parameter iTemp; it preserves the next to the last value of
$FAXSTATUS. When the fax has completed, the value of $FAXSTATUS
is zero (not busy) but we want to know if the transmission was successful
or not.

 PPaaggee 6622 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Other Fax Commands

faxcancel Cancels the current fax operation

faxlist Enumerates the faxes displayed in the received or
scheduled fax lists

faxmodem Determines if a modem is fax capable

.faxpoll Dials a Connection Directory entry or group, or a specified
number to receive faxes from a host

faxprint Prints a specified fax file

faxremove Removes a fax file from the received or scheduled fax list

faxstatus Queries the status of a specific fax connection

faxview Displays a fax file

These commands are used to determine information about the faxing
system. They are used in conjunction with the Set and Fetch commands
that control the paths and other fax settings that are contained in the
Setup Options.

Exercise 6a

@ Write a script that lets the user list fax files in a fax outbox directory
and choose one fax to send. Then the user is queried for the name
and fax number of the recipient in order to send the fax. After the
fax transmission ends, report to the user whether or not it was
successful.

Exercise 6b

@ Create a dialog box that reports the current settings for Fax Retries,
Fax Retry Delay Interval, whether or not faxes are automatically
printed upon receipt, and whether or not faxes are deleted after
sending.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 6633 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

 PPaaggee 6644 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Chapter 7 - DOS File Commands

One of the most popular uses of ASPECT is to automate file uploading
and downloading. An important component of this is manipulating the
files at the DOS level. There are commands to check for the file’s
presence, determine its size and date, delete it or rename it plus many
more actions.

File Existence

findfirst filespec [string]

findnext

The findfirst command locates a file as specified. The argument for the
file search may contain wildcards. The search will default to the current
directory if no path is given. The optional string determines the attributes
to be used in the search. The file’s fully qualified filespec, name,
extension, name and extension, size, date stamp, time stamp and
attributes are stored in the system variables $FILESPEC, $FNAME,
$FEXT, $FILENAME, $FSIZE, $FDATE, $FTIME and $FATTR
respectively. The long value representing the file’s date and time is stored
in $FLTIME.

The findnext command locates additional files as specified in the
findfirst command.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 6655 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Sample script with FINDFIRST and System Variables

;*sample for FINDFIRST and $-variables

;***
;* GLOBAL VARIABLES
;***
string FileTypes ;file specification for searching
string FileExtension ;Extension of the found file
string FileTitle ;name of the file
string SizeOfFile ;size of the file
string DateOfFile ;date of the file
string TimeOfFile ;time stamp of the file
string AttributesOfFile ;attributes of the file

;***
;*
;* MAIN
;* The Main procedure DisplayDialog to display the dialog box. It also
;* initializes the WHEN statement for the events in dialog Box 0.
;*
;* Calls: Proc1, Proc2
;* Modifies globals: Var1
;*
;***
proc main

 when dialog 0 call Handler0

 DisplayDialog ()

endproc

;***
;*
;* DisplayDialog
;* The procedure DisplayDialog displays the dialog box with the file
;* specification for the FINDFIRST and FINDNEXT commands. It also displays
;* the results of the file that was found by these two commands.
;*
;* Calls: none
;* Called by: Main
;* Modifies globals: Filetypes
;*
;***
proc DisplayDialog

 ;Create the dialog box. This is a Style 71 box --
 ;64 = suspend script while the dialog box is displayed
 ; 4 = Modeless
 ; 2 = Movable with caption
 ; 1 = centered

dialogbox 0 107 46 264 113 71 "FINDFIRST Command"
 ;The text explains what is to be entered into the edit
 ;box. In this case, it is to be something like "*.wax"

 text 1 15 11 34 11 "FileSpec" left
 editbox 2 63 10 102 11 FileTypes
 ;The texts 3-8 will contain the contents of the system
 ;variables that describe the file found with the
 ;findfirst command.

 text 3 22 36 92 11 FileTitle left
 text 4 22 53 92 11 FileExtension left

 text 5 22 69 92 11 AttributesOfFile left

 PPaaggee 6666 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

 text 6 155 36 92 11 TimeOfFile left
 text 7 155 53 92 11 DateOfFile left

 text 8 155 69 92 11 SizeOfFile left
 ;Click on this button to do a FINDFIRST on the file
 ;specs listed in the edit box.

 pushbutton 24 17 86 54 13 "FindFirst" DEFAULT
 ;click this button to do a FINDNEXT on the same filespecs

 pushbutton 25 97 86 54 13 "FindNext"
 ;click this button to exit the script

 pushbutton 26 177 86 54 13 "Exit" CANCEL
enddialog

endproc

;***
;*
;* Handler0
;* The procedure Handler0 precesses the events from Dialog Box 0. According
;* to which button was pushed, a file is located. The information about this
;* file is retrieved from the system variables and displayed in the dialog
;* box.
;*
;* Calls: none
;* Called by: Main
;* Modifies globals: FileTitle, FileExtension, SizeOfFile, DateOfFile,
;* TimeOfFile, AttributesOfFile
;*
;***
proc Handler0
integer Event0 ;event in Dialog Box 0

 ;Which event happened in Dialog Box 0?
dlgevent 0 Event0

 ;make decisions based on the event
switch Event0
 ;Findfirst button

case 24
 ;Find the first file with the file specs contained
 ;in FileTypes

findfirst FileTypes
 ;Format the system variables describing the first file
 ;into the corresponding variables for the texts in the
 ;dialog box.

strfmt FileTitle "File Name is %s" $FNAME
strfmt FileExtension "Extension is %s" $FEXT
strfmt SizeOfFile "Size is %li bytes" $FSIZE
strfmt DateOfFile "Date is %s" $FDATE
strfmt TimeOfFile "Time is %s" $FTIME
strfmt AttributesOfFIle "Attributes are %s" $FATTR

 ;After the variables are formatted, then update the
 ;texts in the dialog box.

dlgupdate 0 3 8
endcase

 ;FindNext button
case 25

 ;Find the next file with the same file specs as the
 ;last FINDFIRST command

findnext
 ;Format the system variables describing the first file
 ;into the corresponding variables for the texts in the
 ;dialog box.

strfmt FileTitle "File Name is %s" $FNAME
strfmt FileExtension "Extension is %s" $FEXT
strfmt SizeOfFile "Size is %li bytes" $FSIZE
strfmt DateOfFile "Date is %s" $FDATE
strfmt TimeOfFile "Time is %s" $FTIME
strfmt AttributesOfFIle "Attributes are %s" $FATTR

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 6677 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

 ;After the variables are formatted, then update the
 ;texts in the dialog box.

dlgupdate 0 3 8
endcase

 ;exit button
case 26

exit
endcase

endswitch
endproc

isfile filespec [intvar]

This command determines if a file exists. It requires a specific file name,
not wildcards. It works by trying to open a file for reading. This may fail
even if the file exists because another process may be using the file. The
command sets Success/Failure so it is often used as follows:

if isfile NameFile

 ……

else

 ……

endif

File Information Commands

fileget filespec {ATTRIBUTE | DATE | TIME strvar} |

{LTIME | SIZE longvar}

fileset filespec {ATTRIBUTE | DATE | TIME string} |

{LTIME | SIZE long}

These file commands will report or set the date, time, attributes or size for
a specified file.

 PPaaggee 6688 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

File Path Commands

getfilename strvar filespec

getpathname strvar filespec

These commands are useful for splitting the file specification into the file
name and the path name.

addfilename pathname filename

This command will add the file name to the path name and store the result
in the pathname. This could be done by using strcat to concatenate the
path name and the file name but the difference is that addfilename adds
a backslash if needed.

splitpath filespec drive path FileName FileExtension

makepath filespec drive path FileName FileExtension

These commands are similar to the previous commands except these
work with much greater detail.

fullpath strvar filespec [pathname]

shortpath filespec strvar

These commands return the fully qualified path name including the drive
identification. The fullpath command uses long file names and the
shortpath command uses the 8.3 aliases. The shortpath result may be
useful on networks that don’t support long file names.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 6699 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

File-Moving Commands

copyfile FromFileSpec ToFileSpec

copyfile works similar to the DOS COPY command. However, copyfile
does not support wildcards. Script execution is suspended until the file is
copied. The FileSpec should be the fully qualified path and filename in
order to avoid surprises.

delfile FileSpec

This command will delete a file. The filespec may include a full directory
path. If the path isn’t specified, the current User Path is assumed.
Wildcards are not allowed.

rename FromFileSpec ToFileSpec

If no path is supplied, rename searches the User Path for the source file.
Files can be renamed to a different directory on the same drive, which is
equivalent to moving them from one directory to another.

Directory Commands

chdir pathname [ASPECTPATH]

 PPaaggee 7700 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

This command will change to the specified path or disk. Note, this is
different behavior from the DOS chdir command. Optionally, the new
path may become the ASPECT directory.

getdir diskID strvar

This command returns the current working directory on the specified disk.
DiskID is an integer number designating the drive. 0 indicates the current
drive, 1 specifies drive A, 2 for drive B and so on, up to 26 for Z.

mkdir pathname

This command will create a new directory following the standard DOS
rules. If no path is specified, then the new directory will be a subdirectory
of the current directory.

rmdir pathname

This command will remove an empty directory using the specified path
and file name. If no path is specified, a sub-directory of the current
directory will be assumed.

Miscellaneous DOS commands

run string [MINIMIZED | MAXIMIZED | HIDDEN] [intvar]

dos string [MINIMIZED | MAXIMIZED | HIDDEN] [intvar]

shell [intvar]

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 7711 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

These commands will run an external program, execute a DOS command
or display the DOS command prompt, respectively. In each case, the task
id of the session is returned in the integer variable. This task id can be
used in any other commands that require it.

Exercise 7a

@ Write a script that will find your AUTOEXEC.BAT and report its size
and date. Check to see if MYAUTOEXEC.BAT exists in the
ASPECT directory. If it exists, rename it to MYAUTOEXEC.OLD.
Then copy AUTOEXEC.BAT to the ASPECT directory and rename
it to MYAUTOEXEC.BAT.

 PPaaggee 7722 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Chapter 8 - File I/O Procedures

Files are an excellent way to communicate between programs, to save
information and to transport data to other computers. Procomm Plus has
several commands that make file manipulations easy.

fopen and fclose

fopen id filespec READ | WRITE | READWRITE | CREATE |

APPEND | READAPPEND [TEXT] [SHARED]

fclose id

These are the mandatory first and last commands. You must open the
file, tell the system how you plan to use the file and receive an ID. The
READ/WRITE options are self-explanatory. If you specify the TEXT
option, then this optional parameter forces ASPECT to strip line feeds and
carriage return/line feed combinations from the end of a string during an
fgets operation. ASPECT also appends a carriage return/line feed
combination to a string written with the fputs command. The file can be
shared with child scripts but not other programs.

fgets, fputs, fgetc and fputc

fputs id string

These are the commands for file I/O. The commands fgets and fputs will
transfer a string while fgetc and fputc transfer a character. Remember
that if the file was opened in TEXT mode, a CR/LF will be automatically
inserted for fputs or stripped for fgets.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 7733 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Sample script using fopen and fgets

This is a script to illustrate opening and reading a file. The chosen file is
the PW4.INI file that is in the “Windows” directory. This can be different
on each computer so use the $WINPATH to get the path name. Then it is
concatenated onto the file name. The file is opened as READ only
because there is no need to write into the file at this time. The TEXT
parameter is used because this is a text file and the CR/LF should be
stripped off each line. The demonstration is just to read and display the
first 10 lines in the file. Contrast this with the profilerd example below.

proc main

integer Counter ;counter for the loop
string LineFile ;line read from the file
string IniFileName ;name of the file to open

 ;Get the path for the Windows directory
IniFileName = $WINPATH
 ;add on the file name
strcat IniFileName "\PW4.INI"
 ;open the file for read only and text processing
fopen 0 IniFileName READ TEXT

 ;arbitrary loop to read 10 lines from the file
for Counter = 1 upto 10
 ;read the next line from the file

fgets 0 LineFile
 ;if we aren't at the end of file
if SUCCESS
 ;report to the user what the line was

 usermsg "Line %i is `n`r%s" Counter LineFile
 endif
endfor

endproc

Fstrfmt

fstrfmt id formatstr [arglist]

This command is similar to strfmt except that the output is written to the
file.

 PPaaggee 7744 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

profilewr filespec topic item variable

profilerd filespec topic item variable

These commands are a very easy way to store or access data in a file.
The format of the file must be in the “.INI” format which is

[topic]

item=variable

item1=variable1

The difference between these and other file-access commands is that the
script doesn’t need to open or close the file. The script also doesn’t have
to read the file one line at a time and parse each line to find the value of
the variable for a particular item. These commands open the file, read the
file, parse the line, access the variable and close the file all in the one
command. If the topic or item doesn’t exist, profilewr will create them.

Sample script using profilerd

For this command, we don’t have to open or close the file, just access it.
Here we do need to know the Topic and the Item as well as whether the
value is an integer or a string. If it is an integer, we can read it as an
integer. Usually, we would read a file as a string then convert it to a
number.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 7755 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

proc main

integer IniValue ;value read from the INI file
string IniFileName ;name of the file to open

 ;Get the path for the Windows directory
IniFileName = $WINPATH
 ;add on the file name
strcat IniFileName "\PW4.INI"
 ;we don't have to open the file, just read it
 ;the topic is [Settings] and the item is PW Large Icons
 ;The value is an integer so we read it as an integer
profilerd IniFileName "Settings" "PW Large Icons" IniValue

 ;report the value
usermsg "The value for PW Large Icons is %i" IniValue

endproc

Exercise 8a

@ Create a dialogue window to input 5 names, area codes, telephone
numbers and company names. For each set of entries, create a
comma-delimited line in a file. (A check on how well you do this
exercise is to import this file into the Connection Directory.)

 PPaaggee 7766 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Chapter 9 - File Transfers

A common use of Procomm is to automate file transfers. This will simplify
transferring data on a regular basis. All of the controlling parameters for
a transfer protocol can be set using Set and Fetch commands.

getfile and sendfile

getfile protocol | index | string | DEFAULT [filespec[filespec]]

sendfile protocol | index | string | DEFAULT [filespec [filespec]]

These commands are identical in their syntax. The transfer protocol can
be specified by name, index, string variable or DEFAULT. Depending on
the protocol, the local and remote filespec may be specified.

Both getfile and sendfile are asynchronous; this means that the script
will go on to the next command after the file transfer has been initiated.
Usually, it is desirable to find out whether or not the file transfer was
successful and then act upon that result. If the script needs to wait for the
fax to complete, it is necessary to monitor the $XFERSTATUS with a
WHILE loop.

The values for $XFERSTATUS are:

0 not busy

1 busy, sending or receiving

2 successfully sent or received

3 transfer aborted

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 7777 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

iTemp = 1 ;Set iTemp value to 1 (for loop.)
 sendfile ZMODEM “sendfile.txt”
 while iTemp == 1 ;While faxing is going on.
 iTemp = $XFERSTATUS ;Store value in $XFERSTATUS in iTemp
 yield ;Yield processor time.
 endwhile
 if iTemp == 2 ;Test the value of iTemp for success
 usermsg "File successfully sent."
 else ;or failure of file
 errormsg "File transfer failed!."
 endif

The reason for writing the WHILE-loop this way is so that we can
determine if the fax was successful or not. Once $FAXSTATUS is set to 2
(successful) or 3 (failed) within the WHILE loop and it is accessed by the
script, $XFERSTATUS is set back to zero. This is why it is important to
use the parameter iTemp; it preserves the next to the last value of
$XFERSTATUS. When the fax has completed, the value of
$XFERSTATUS is zero (not busy) but we want to know if the transmission
was successful or not.

The yield command inside of the while loop releases CPU time to the
transfer process. Otherwise, the computing power is tied up in the while
loop and the transfer is much slower.

Exercise 9a

@ Connect to the Symantec BBS using the Connection Directory to
make the modem connection. Go to the Top 10 list. Download the
first file using Xmodem transfer protocol.

 PPaaggee 7788 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Chapter 10 - DDE

DDE – Dynamic Data Exchange -- is a means by which two Windows
programs can communicate with each other. Procomm Plus’ ability to use
DDE to communicate with other applications increases its power and
versatility. For example, a Microsoft Access macro can retrieve a list of
names and fax numbers then send a sequence of commands to Procomm
Plus to fax a sales information sheet to each name in the list. Conversely,
a Procomm Plus script could retrieve those names and telephone
numbers then send a fax to each one of them. One major requirement is
that the user be familiar with the DDE commands for both Procomm Plus
and Access.

To make use of DDE, one program, known as the client, initiates a DDE
session with another program, known as the server. This is accomplished
by sending the server application a DDE initiate message. After the
session is established, the client application sends DDE commands to the
server application. The client can send as many commands as desired to
the server during a single DDE conversation. When the client is finished
communicating with the server application, the client is required to close
the link. This is accomplished by sending a DDE terminate message to
the server application.

Note that the client always sends the commands to the server, not vice
versa. The server can send responses to queries by the client but it
cannot tell the client to perform any operations. If the server application
wants to send commands to the client application, a separate DDE link
will need to be established. For example, if Procomm Plus initiates a
DDE link with Microsoft Access, Procomm Plus becomes the client while
Microsoft Access becomes the server. Procomm Plus can tell Microsoft
Access to do a variety of things, including entering data into the data
base. However, Microsoft Access cannot tell Procomm Plus to dial a
phone number. In order to do this, a second DDE link would have to be
created where Microsoft Access is the client and Procomm Plus is the
server. Each DDE link is given a different identification number, known as

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 7799 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

the DDE channel number, so multiple DDE links between two applications
can exist simultaneously. Procomm Plus can act as either client or
server.

DDE Session

These steps must take place:

• Client initiates the DDE link to the Task or Window

• Client sends commands to the Host and may receive responses

• Client terminates the DDE link. It may also end the Host program.

DDE Initiation

ddeinit chanID TaskName Topic [intvar]

This command will return the identification number for the DDE channel in
the long variable chanID. The TaskName is the name that the Host is
known to DDE. This is in the DDE documentation for a particular
application; for Procomm Plus, it is “PW4”. The Topic is one of the topics
that the Host recognizes. These are also given in the DDE
documentation. Most applications will respond to a topic of “System”.
Procomm Plus also supports a script name as a topic. Thus, you can
initiate a DDE link to Procomm Plus and run a script with one command.

If there is more than one instance of an application that is to be the Host,
then we need to specify the instance. The intvar is the Window ID of the
main window of the instance of the application. The following snippet of
code illustrates how to obtain and use this information.

 PPaaggee 8800 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

…..
……
run “excel.exe”
pause 7
WindowID = $MAINWIN
ddeinit chanID “Excel” “System” WindowID

Execution of Commands

After a DDE link has been established, the Client can send commands to
the Host. Note that the syntax of the client application’s DDE command
will vary from application to application. For more information on how to
program other clients to perform DDE, refer to that application’s user
guide.

Procomm Plus as a Host

Other programs or another instance of Procomm Plus can initiate a DDE
link with Procomm Plus as a Host. There are a limited number of
commands that can be transmitted directly to the Host. This number is
expanded greatly by the command ASPECTCMD; almost any valid
ASPECT command can be transmitted.

ASPECTCMD string – executes an ASPECT command. This can be used
to perform almost all of the available ASPECT tasks and settings.

Capture ON/OFF – toggles data capture on/off

DIAL dialclass [GROUP] name – dials or connects the specified
Connection Directory entry

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 8811 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Dialload filespec -- loads the specified Connection Directory

Execute filespec – Executes a specific script file

Getfile protocol filespec – begins a file download with the specified
transfer protocol.

Halt – halts the currently executing script

Hangup – disconnects the active data line

Pwexit – exits the Host session of Procomm Plus

Sendfile protocol filespec -- begins a file upload with the specified transfer
protocol.

Transmit string – sends the specified string out the active port.

Polling commands

Procomm Plus also offers a set of internal items that can be polled by a
client application. These topic command keywords are:

TOPICS -- Returns "System" and the name of the currently executing
script file, if any. The items are returned in a string, each separated by a
tab character.

SYSITEMS -- Lists the available items for the topic and a list of ASPECT
predefined variables that can be requested. The items are returned in a
string, each separated by a tab character.

 PPaaggee 8822 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

FORMATS -- Displays the Windows Clipboard formats available for DDE
exchange. Only the text format is supported by Procomm Plus.

STATUS -- Returns a block of information in a string, with each item
separated by a comma:

DIAL DIR {directory name},
{script file | NO SCRIPT},
OFFLINE | ONLINE,
CAPTURE ON | OFF,
PRINTER ON | PRINTER OFF,
{TERMINAL | {FILE XFER} | DIALING},
FAX IDLE | FAX BUSY

We've placed the items on separate lines for clarity. This status
commands is the easiest method to query a Host session of Procomm
Plus. Since the system variables that we would normally use are not
available, this provides a way of obtaining information about the current
activities of the Host session

HELP -- Displays brief help text describing Procomm Plus’ DDE server
support.

ASPECT examples:
ddeexecute l0 "ASPECTCMD usermsg '"Hello'"" ;Note how quotes are used.
ddeexecute l0 "capture ON"
ddeexecute l0 "DIAL WWW SYMANTEC" ;Dialing entry name is case sensitive!!!
ddeexecute l0 "transmit '"ATDT 4017^M'""
ddeexecute l0 "PWEXIT"
ddeexecute l0 “status” strvar

Advise

When Procomm Plus is the Host, a DDE ADVISE command can be used
to create a “hot link” which monitors the value of a predefined ASPECT
variable. These variables consist of integers (i0-i9), strings (s0-s9), floats
(f0-f9) and longs (l0-l9).

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 8833 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

Procomm Plus as a Client

The following commands are available in ASPECT when you are using
Procomm Plus as the DDE Client

ddeinit

ddeterminate

ddeadvise

ddeunadvise

ddepoke

dderequest

ddeexecute

The following examples illustrate the use of these DDE Client commands.
The first script is starting a second instance of Procomm Plus (Host). The
Host session of Procomm Plus is told to run a script to download a file
then notify the Client session with the name of the downloaded file.

Client script

string FileDown ;name of the downloaded file

proc main

 string pathname ;path to PW4.EXE
 integer pwhwnd ;window ID of the Host session
 long pwchanid ;DDE channel ID

 pathname = $pwtaskpath ;Get PW's path.
 addfilename pathname "PW4.EXE" ;Add Procomm's EXE.

 PPaaggee 8844 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

 run pathname ;start up Host session of PW4
 pause 4 ;wait for PW4 to start and get focus

 pwhwnd = $MAINWIN ; retreive the window ID

 ;initiate the DDE link and start the
 ;downloading script

ddeinit pwchanid "pw4" "ddednld.wax" pwhwnd
if success ;confirm that the link was established

usermsg "ddeinint ok"
else

usermsg "ddeinit not ok"
endif

ddeadvise pwchanid "s0" FileDown ;tell the DDE link to notify the
 ;Client when s0 changes
when $ddeadvise call reporter ;when s0 changes, call the procedure
 ;to report the change

while 1 ;keep looping while we are waiting
yield ; for s0 to change

endwhile

endproc

proc reporter ;called procedure when s0 changes

usermsg "success %s" FileDown ;report the name of the downloaded file
ddeexecute pwchanid "pwexit" ;exit the Host session of PW
exit ;exit the Client session of PW

endproc

 Host Script

…
…
 log on to the remote system and choose the file to be downloaded
…
…
 getfile ZMODEM “*.txt” ;start the download process
 pause 5 ; wait to give it time to start
 s0 = $XFERFILE ;set s0 to the name of the fill being transferred
 while $XFERSTATUS ; pause the script while the file downloads
 yield
 endwhile

….
…..
 log off remote system
…
….

Exercise 10a

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 8855 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

@ One instance of Procomm will be the Client. It will run a script that
opens a second instance of Procomm and displays a user
message in the second instance.

 PPaaggee 8866 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Exercise Source Codes

These ASPECT scripts are intended only as a sample of ASPECT
programming. Symantec makes no warranty of any kind, express or
implied, including without limitation, any warranties of commercial
practicality and/or fitness for a particular purpose. Use of these
programs is at your own risk.

Exercise 2a

@ Create a script to display a standard message box with 3 buttons:
yes, no and cancel. If the user presses "YES", then the second
message box says "You pressed YES". If the user presses "NO",
the second message box says "You pressed NO". If the user
presses "CANCEL", the script exits immediately.

;*Exercise2a.was Sample script
;**
;*
;* MAIN
;* The Main procedure displays a standard message box with 3 buttons: yes,
;* no and cancel. If the user presses "YES", then the second message box
;* says "You pressed YES". If the user presses "NO", the second message
;* box says "You pressed NO". If the user presses "CANCEL", the script
;* exits immediately.
;*
;* Calls: none
;* Modifies globals: none
;*
;**
proc main
 ;variables for the results of the message boxes
 integer result1, result2
 ;first message box
 sdlgmsgbox "Exercise2a" "Press a button" QUESTION YESNOCANCEL result1
 ;actions based on the results of which button was pressed
 switch result1
 ;YES button
 case 6
 sdlgmsgbox "title" "You pressed YES" INFORMATION ok result2
 endcase
 ;NO button
 case 7

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 8877 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

 sdlgmsgbox "title" "You pressed NO" STOP OK result2
 endcase
 ;CANCEL button
 case 2
 exit
 endcase
 endswitch

endproc

Exercise 2b

@ Create a script to display a standard input box asking for a general
directory specification. Using that directory specification, open a
standard file listing box and let the user choose one file. Report the
name of the file that was chosen.

;Exercise2b.was Sample script
;**
;*
;* MAIN
;* The Main procedure displays a standard input box asking for a general
;* directory specification. Using that directory, it opens a standard
;* file listing box and lets the user choose one file. It reports the
;* name of the file that was chosen..
;*
;* Calls: none
;* Modifies globals: none
;*
;**
proc main
 ;directory specification
 string dirspec
 ;file chosen by user
 string specfile
 ;result of button press in message box
 integer result1
 ;query user for the directory specification
 sdlginput "title" "Please enter a directory specification" dirspec
 ;display seected directory and chose a file
 sdlgfopen "title" dirspec SINGLE specfile
 ;display chosen file name
 sdlgmsgbox "title" specfile INFORMATION OK result1

endproc

Exercise 3a

 PPaaggee 8888 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

@ Input 2 strings then test to see if they are identical. The output
should report if they are identical or not.

;*Exercise3A.was Sample script
;**
;*
;* MAIN
;* The Main procedure performs the input, comparison and output
;*
;* Calls: none
;* Modifies globals: none
;*
;**
proc main
 ;strings for the input variables
 string InputLine1, InputLine2
 ;integer to report the result of the comparison
 integer ComparisonResult
 ;integer to report which button was pressed in dialog box
 integer MsgButton

 ;Request the user to input 2 strings
 sdlginput "First Input" "Please type in your first string" InputLine1
 sdlginput "Second Input" "Please type in your second string" InputLine2
 ;compare the 2 input lines
 strcmp InputLine1 InputLine2 ComparisonResult
 ;output the results of the comparison
 if ComparisonResult == 0
 sdlgmsgbox "Comparison Results" "The 2 Lines Match" INFORMATION OK MsgButton
 else
 sdlgmsgbox "Comparison Results" "The 2 Lines Don't Match" EXCLAMATION OK MsgButton
 endif

endproc

Exercise 3b

@ Input a list of names. Report whether or not the list contains a “J”.

;Exercise3b.was Sample Script
;**
;*
;* MAIN
;* The Main procedure asks the user to input a list of names. Then it
;* reports whether or not the list contains a "J". *
;*
;* Calls: none
;* Modifies globals: none
;*
;**

proc main
 ;variable for the names
 string ListName
 ;result button for the message box

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 8899 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

 integer msgbutton

 ;request input from the user
 sdlginput "Name List" "Please input your list of names" ListName
 ;look for a "J" in the input string
 strfind ListName "J"
 ;report the results of the string search
 if SUCCESS
 sdlgmsgbox "J Report" "I found a J" EXCLAMATION OK MsgButton
 else
 sdlgmsgbox "J Report" "I didn't find a J" STOP OK MsgButton
 endif

endproc

Exercise 3c

@ Input a list of names. Check to see if there are any J’s in the list
and replace them with QD’s. Report the resulting list.

;Exercise3c.was sample script
;**
;*
;* MAIN
;* The Main procedure asks the user to input a list of names. Then it
;* checks to see if there are any J’s in the list and replace them with
;* QD’s. It reports the resulting list.
;*
;* Calls: none
;* Modifies globals: none
;*
;**
proc main

 ;variable for the input name list
 string ListName
 ;result button for the message box
 integer MsgButton
 ;index for the location of "J" in the names list
 integer FindResult

 ;request the name list
 sdlginput "Name List" "Please input your list of names" ListName
 ;search the string for a J
 strfind ListName "J" FindResult
 ;if a J was found, replace it
 if SUCCESS
 strreplace ListName "J" "QD"
 sdlgmsgbox "New Name List" ListName INFORMATION OK MsgButton
 else
 sdlgmsgbox "J Report" "I didn't find a J" STOP OK MsgButton
 endif

endproc

 PPaaggee 9900 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Exercise 3d

@ Input a comma-delimited list of names. Output the 3rd name in the
list

;*Exercise3D.was Sample Script
;**
;*
;* MAIN
;* The Main procedure asks the user to input a comma-delimited list of
;* names. Then it outputs the 3rd name in the list
;*
;* Calls: none
;* Modifies globals: none
;*
;**
proc main

 ;variable for the names list
 string ListName
 ;variable for the 3rd name
 string OneName
 ;result button for the message box
 integer MsgButton

 ;request the name list
 sdlginput "Name List" "Please input your list of names" ListName
 ;extract the 3rd name
 strextract OneName ListName "," 2
 ;if a name is found, report it
 if nullstr OneName
 sdlgmsgbox "Problem" "I didn't find a third name in the list" STOP OK MsgButton
 else
 sdlgmsgbox "Third Name" OneName INFORMATION OK MsgButton
 endif

endproc

Exercise 3e

@ Input 2 strings. Output the strings and their lengths individually.
Concatenate them and report the combined string and its length.

;*Exercise3e.was Sample script
;**
;*
;* MAIN
;* The Main procedure asks the user to input 2 strings. Then it outputs
;* the strings and their lengths individually. The script concatenates
;* them and reports the combined string and its length.
;*
;* Calls: none
;* Modifies globals: none

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 9911 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

;*
;**
proc main

 ;first input string
 string InputString1
 ;second input string
 string InputString2
 ;concatenated string for output
 string OutputString
 ;result button for message window
 integer MsgButton
 ;length of the first string
 integer Len1
 ;length of the second string
 integer Len2

 ;request the first string
 sdlginput "String Input" "Please input your first string" InputString1
 ;request the second string
 sdlginput "String Input" "Please input your second string" InputString2
 ;determine the length of each string
 strlen InputString1 Len1
 strlen InputString2 Len2
 ;format the String 1 output into 2 lines
 strfmt OutputString "%s`n`rLength=%d" InputString1 Len1
 sdlgmsgbox "Input String 1" OutputString INFORMATION OK MsgButton
 ;format the String 2 output into 2 lines
 strfmt OutputString "%s`n`rLength=%d" InputString2 Len2
 sdlgmsgbox "Input String 2" OutputString INFORMATION OK MsgButton
 ;concatenate string 2 onto string 1
 strcat InputString1 InputString2
 ;determine the combined length
 strlen InputString1 Len1
 ;format and output the combined string
 strfmt OutputString "%s`n`rLength=%d" InputString1 Len1
 sdlgmsgbox "Combined String" OutputString INFORMATION OK MsgButton

endproc

Exercise 3f

@ Input 3 numbers. Add them together and report the sum.

;*Exercise3f.was Sample Script
;**
;*
;* MAIN
;* The Main procedure asks the user to input 3 numbers. The script adds
;* them together and reports the sum.
;*
;* Calls: none
;* Modifies globals: none
;*
;**
proc main

 ;string variables for the 3 input numbers

 PPaaggee 9922 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

 string OneNumber, TwoNumber, ThreeNumber
 ;string variable for the output number
 string OutputString
 ;integer variables for the 3 input numbers
 integer Numb1, Numb2, Numb3
 ;integer variable for the sum
 integer SumAll
 ;result index for the message box
 integer MsgButton

 ;request the first number
 sdlginput "String Input" "Please input your first number" OneNumber
 ;request the second string
 sdlginput "String Input" "Please input your second number" TwoNumber
 ;request the third string
 sdlginput "String Input" "Please input your third number" ThreeNumber
 ;convert the input strings into integers
 atoi OneNumber Numb1
 atoi TwoNumber Numb2
 atoi ThreeNumber Numb3
 ;add the numbers together
 SumAll = Numb1 + Numb2 + Numb3
 ;format output
 strfmt OutputString "%d + %d + %d = %d" Numb1 Numb2 Numb3 SumAll
 sdlgmsgbox "Sum 3 Numbers" OutputString INFORMATION OK MsgButton

endproc

Exercise 3g

@ Input 3 floating point numbers. Report the average to 2 decimals.

;*Exercise3g.was Sample script
;**
;*
;* MAIN
;* The Main procedure asks the user to input 3 floating point numbers. The
;* script reports the average to 2 decimals.
;*
;* Calls: none
;* Modifies globals: none
;*
;**
proc main

 ;string variables for the 3 input numbers
 string OneNumber, TwoNumber, ThreeNumber
 ;string variable for the output average
 string OutputString
 ;float variables for the 3 input numbers
 float Numb1, Numb2, Numb3
 ;float variable for the average
 float Average
 ;result index for the message box
 integer MsgButton

 ;request the first number
 sdlginput "String Input" "Please input your first number" OneNumber

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 9933 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

 ;request the second string
 sdlginput "String Input" "Please input your second number" TwoNumber
 ;request the third string
 sdlginput "String Input" "Please input your third number" ThreeNumber
 ;convert the input strings into integers
 atof OneNumber Numb1
 atof TwoNumber Numb2
 atof ThreeNumber Numb3
 ;average the numbers
 Average = (Numb1 + Numb2 + Numb3) / 3.0
 ;format output
 strfmt OutputString "The average of %8.3f, %8.3f and %8.3f is %8.2f" Numb1 Numb2 Numb3 Average
 sdlgmsgbox "Sum 3 Numbers" OutputString INFORMATION OK MsgButton

endproc

Exercise 4a

@ Repeat Exercise 3f (Input 3 numbers. Add them together and
report the sum.) but now do the input of all three numbers on the
same dialogue box.

;*Exercise4a.was Sample Script
;**
;*
;* MAIN
;* The Main procedure uses a dialogue box to input 3 numbers. The script
;* adds them together and reports the sum.
;* This is a Type 67 Dialogue Box--1(centered)+ 2(movable)+ 64 (Suspend
;* script execution until the dialog box is destroyed) = 67.
;*
;* Calls: none
;* Modifies globals: none
;*
;**
proc main

 ;string variables for input numbers
 string OneNumber, TwoNumber, ThreeNumber
 ;string variable for output number
 string OutputString
 ;integer variables for the input numbers
 integer Numb1, Numb2, Numb3
 ;integer variable for the sum
 integer SumAll
 ;result index for the user message
 integer MsgButton

 ;dialog box for input
 dialogbox 0 8 20 175 124 67 "Numbers Input"
 text 1 30 20 46 11 "First Number" left
 text 2 30 47 61 11 "Second Number" left
 text 3 30 74 56 11 "Third Number" left
 editbox 4 104 20 34 11 OneNumber
 editbox 5 104 47 34 11 TwoNumber
 editbox 6 104 74 34 11 ThreeNumber
 pushbutton 7 125 98 34 14 "OK" OK

 PPaaggee 9944 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

 enddialog
 ;convert the input strings to numbers
 atoi OneNumber Numb1
 atoi TwoNumber Numb2
 atoi ThreeNumber Numb3
 ;add the numbers together
 SumAll = Numb1 + Numb2 + Numb3
 ;format output
 strfmt OutputString "%d + %d + %d = %d" Numb1 Numb2 Numb3 SumAll
 sdlgmsgbox "Sum 3 Numbers" OutputString INFORMATION OK MsgButton BEEP

endproc

Exercise 4b

@ Present a lunch menu to the user consisting of at least 7 items. Let
the user choose 3 items then list the choices.

;*Exercise 4b.was Sample Script
;**
;*
;* This script presents a lunch menu to the user consisting of at least 7
;* items. The user chooses 3 items then the script lists the choices
;*
;***
;***
;* GLOBAL VARIABLES
;***
string MyLunch ;global string to hold lunch selections

;**
;*
;* MAIN
;* The Main procedure calls LunchMenu to display the dialog box with the
;* menu items. It also initializes the WHEN command that waits for an event
;* in Dialog Box 0.
;*
;* Calls: LunchMenu
;* Modifies globals: none
;*
;**
proc main
 when dialog 0 call Event0Handler
 LunchMenu ()
endproc

;**
;*
;* LunchMenu
;* The procedure LunchMenu displays the dialog box 0 with a list box
;* containg the menu items. The user can choose several items then click
;* on the OK button.
;*
;* Calls: none
;* Called by: Main
;* Modifies globals: MyLunch
;*
;**

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 9955 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

proc LunchMenu
 string LunchItems
 ;list of items to be displayed
 LunchItems = "Tuna Salad on Whole Wheat,Tongue on Rye,Cobb \
 Salad,Coke,Coffee,Cheesecake,Brownie"
 ;dialog box with lunch choices
 dialogbox 0 135 60 193 124 67 "Lunch Menu"
 text 1 47 6 100 11 "Choose 3 items from the menu:" left
 listbox 2 44 36 105 54 LunchItems multiple MyLunch sort
 pushbutton 3 77 103 40 13 "OK" OK
 enddialog
endproc

;**
;*
;* Event0Handler
;* The procedure Event0Handler processes the events in Dialog Box 0. If the user
;* has clicked on the OK button, then the menu items are separated and
;* output.
;*
;* Calls: none
;* Called by: Main (WHEN command)
;* Modifies globals: none
;*
;**
proc Event0Handler
 ;index for the event
 integer Event0
 ;individual lunch items
 string MyLunch1, MyLunch2, MyLunch3

 ;query for which event happened in dialog box 0
 dlgevent 0 Event0
 ;don't do anything except for the OK button (event 3)
 switch Event0
 case 3
 strextract MyLunch1 MyLunch "," 0
 strextract MyLunch2 MyLunch "," 1
 strextract MyLunch3 MyLunch "," 2
 ;display the user's lunch choices
 usermsg "Your Lunch Items:`n`r%s`n`r%s`n`r%s`n`r" MyLunch1 MyLunch2 MyLunch3
 endcase
 endswitch
endproc

Exercise 4c

@ Continue with Exercise 4b by asking the user to confirm the choices
and giving the option to make the choices again.

;*Exercise4c.was Sample script
;**
;*
;* This script presents a lunch menu to the user consisting of at least 7
;* items. The user chooses 3 items then the script lists the choices.
;* The user is asked to confirm the choices and given the option to make
;* the choices again.
;*

 PPaaggee 9966 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

;**

;***
;* GLOBAL VARIABLES
;***
string MyLunch ;global string to pass choices from the dialog window to the event handler

;**
;*
;* MAIN
;* The Main procedure LunchMenu to display the lunch menu. It also
;* initializes the WHEN commands to process the events in the Dialog
;* Windows.
;*
;* Calls: LunchMenu
;* Modifies globals: none
;*
;**
proc main
 ; when statements to process the events in the dialog windows
 when dialog 0 call Event0Handler
 when dialog 1 call Event1Handler
 ;call the dialog window that displays the lunch menu
 LunchMenu ()
endproc

;**
;*
;* LunchMenu
;* The procedure LunchMenu displays the Dialog Window with the lunch items.
;* The user can choose 3 items then click on OK.
;*
;* Calls: none
;* Called by: Main
;* Modifies globals: none
;*
;**
proc LunchMenu
 ;string to hold the total lunch items
 string LunchItems
 LunchItems = "Tuna Salad on Whole Wheat,Tongue on Rye,Cobb Salad,Coke,Coffee,Cheesecake,Brownie"
 ;blank the choices list
 MyLunch = ""
 ;display the lunch items and let user choose
 dialogbox 0 135 60 193 124 67 "Lunch Menu"
 text 1 47 6 100 11 "Choose 3 items from the menu:" left
 listbox 2 44 36 105 54 LunchItems multiple MyLunch sort
 pushbutton 3 77 103 40 13 "OK" OK
 enddialog
endproc

;**
;*
;* Event0Handler
;* The procedure Event0Handler processes the events in Dialog Window 0. If
;* the OK button was pressed, the lunch choices are displayed in Dialog
;* Window 1. The user is given the choice to accept these items or return
;* to Dialog Window 0.
;*
;* Calls: none
;* Called by: Main
;* Modifies globals: none
;*
;**
proc Event0Handler
 ;integer to identify which event happened in the dialog window
 integer Event0
 ;strings to hold each lunch choice
 string MyLunch1, MyLunch2, MyLunch3

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 9977 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

 ;find out which event happened
 dlgevent 0 Event0
 ;do something only if the OK button is clicked
 switch Event0
 case 3
 ;separate the choices into individual variables
 strextract MyLunch1 MyLunch "," 0
 strextract MyLunch2 MyLunch "," 1
 strextract MyLunch3 MyLunch "," 2
 ;display the choices for the user to accept
 dialogbox 1 158 35 184 122 67 "Lunch Choices"
 text 2 26 9 86 11 "You have chosen:" left
 text 3 26 29 115 11 MyLunch1 left
 text 4 26 48 115 11 MyLunch2 left
 text 5 26 67 115 11 MyLunch3 left
 pushbutton 6 26 99 40 13 "Cancel"
 pushbutton 7 105 99 40 13 "OK" OK DEFAULT
 enddialog
 endcase
 endswitch
endproc

;**
;*
;* Event1Handler
;* The procedure Event1Handler processes the events from Dialog Window 1. It
;* gives the user the option to accept the current lunch items or go back to
;* choose something different.
;*
;* Calls: LunchMenu
;* Called by: Main
;* Modifies globals: none
;*
;**
proc Event1Handler
 ;integer to identify which event happened in the dialog window
 integer Event1
 ;find out which event happened
 dlgevent 1 Event1
 ;Take action only if OK or Cancel was clicked
 switch Event1
 ;cancel -- choose again
 case 6
 LunchMenu ()
 endcase
 ;OK -- phone in the order
 case 7
 usermsg "Your order has been phoned to Pizza Hut`n`rIt will be delivered soon"
 exit
 endcase
 endswitch
endproc

Exercise 4d

@ Create a dialogue box with 3 radio buttons: left, center and right.
Depending on the user’s choice, display a window at the left, center
or right of the screen.

 PPaaggee 9988 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

;*Exercise4d.was Sample script
;**
;*
;* This script creates a dialogue box with 3 radio buttons: left, center
;* and right. Depending on the user’s choice, the script displays a window
;* at the left, center or right of the screen.
;*
;**

;***
;* GLOBAL VARIABLES
;***
integer Radio1 ;integer for which radio button is clicked

;**
;*
;* MAIN
;* The Main procedure calls ThreeRadioButtons to display the dialog window
;* with 3 radio buttons.
;*
;* Calls: ThreeRadioButtons
;* Modifies globals: none
;*
;**
proc main
 ; when statement to process the event in the dialog window
 when dialog 0 call Event0Handler
 ;call the dialog window to display the choices
 ThreeRadioButtons ()
endproc

;**
;*
;* ThreeRadioButtons
;* The procedure ThreeRadioButtons displays Dialog Box 0 which contains
;* the three radio buttons for the user to select the subsequent display.
;*
;* Calls: none
;* Called by: Main
;* Modifies globals: Radio1
;*
;**
proc ThreeRadioButtons
 ;display the choices
 dialogbox 0 172 68 169 126 67 "Three Radio Buttons"
 radiogroup 1 Radio1
 radiobutton 2 22 34 42 11 "Left"
 radiobutton 3 22 50 42 11 "Middle"
 radiobutton 4 22 66 42 11 "Right"
 endgroup
 groupbox 7 11 18 72 66 "Choose one:"
 pushbutton 5 19 103 40 13 "OK" OK
 pushbutton 6 90 103 40 13 "Exit" CANCEL
 enddialog
endproc

;**
;*
;* Event0Handler
;* The procedure Event1Handler processes events in Dialog Box 0. If the
;* EXIT button was pressed, the script exits. If the OK button was pressed,
;* then check the radio buttons to see which one was pressed then call the
;* appropriate procedure to display the requested window.
;*
;* Calls: LeftWindow, MiddleWindow,RightWindow
;* Called by: Main (WHEN statement)

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 9999 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

;* Modifies globals: none
;*
;**
proc Event0Handler
 ;integer to identify which event happened in the dialog window
 integer Event0
 ;find out which event happened
 dlgevent 0 Event0
 ;do something only if the OK or Exit button is clicked
 switch Event0
 ;Exit button so exit the script
 case 6
 exit
 endcase
 ;OK -- find out which radio button is clicked
 case 5
 switch Radio1
 case 2
 LeftWindow ()
 endcase
 case 3
 MiddleWindow ()
 endcase
 case 4
 RightWindow ()
 endcase
 endswitch
 endcase
 endswitch
endproc

;**
;*
;* LeftWindow
;* The procedure LeftWindow displays a window on the left side of the screen.
;*
;* Calls: ThreeRadioButtons
;* Called by: Event0Handler
;* Modifies globals: none
;*
;**
proc LeftWindow
 ;display the window on the left
 dialogbox 2 10 20 122 64 70 "Left Window"
 text 1 18 5 82 11 "This window is on the left" left
 pushbutton 2 37 32 40 13 "OK" OK DEFAULT
 enddialog
 ;go back for another choice
 ThreeRadioButtons ()
endproc

;**
;*
;* MIddleWindow
;* The procedure MiddleWindow displays a window in the middle of the screen.
;*
;* Calls: ThreeRadioButtons
;* Called by: Event0Handler
;* Modifies globals: none
;*
;**
proc MiddleWindow
 ;display the window in the middle
 dialogbox 2 200 20 122 64 70 "Middle Window"
 text 1 13 5 104 11 "This window is in the middle" left
 pushbutton 2 37 32 40 13 "OK" OK DEFAULT
 enddialog
 ;go back for another choice
 ThreeRadioButtons ()

 PPaaggee 110000 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

endproc

;**
;*
;* RightWindow
;* The procedure RightWindow displays a window on the right side of the screen.
;*
;* Calls: ThreeRadioButtons
;* Called by: Event0Handler
;* Modifies globals: none
;*
;**
proc RightWindow
 ;display the window on the right
 dialogbox 3 380 20 122 64 70 "Right Window"
 text 1 12 6 104 11 "This window is on the right" left
 pushbutton 2 37 32 40 13 "OK" OK DEFAULT
 enddialog
 ;go back for another choice
 ThreeRadioButtons ()
endproc

Exercise 5a

@ Create a dialogue window to input name, area code, fax number
and company name. Create a Connection Directory entry for this
name. You should allow the user to choose to enter another name
or exit the program.

;*Exersice 5a Sample Script
;**
;*
;* Create a dialogue window to input name, area code, fax number and
;* company name. Create a Connection Directory entry for this name.
;* You should allow the user to choose to enter another name or exit
;* the program
;*
;**

;***
;* GLOBAL VARIABLES
;***
 ;variables for the input connection directory entries
string NameIn, AreaIn, PhoneIn, CompanyIn

;**
;*
;* MAIN
;* The Main procedure calls DirectoryEntry to display the dialog box which
;* allows the user to input information. It also initializes the WHEN
;* statements to process events in Dialog Boxes 0 and 1.
;*
;* Calls: DirectoryEntry
;* Modifies globals: none
;*

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 110011 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

;**
proc main
 when dialog 0 call Event0Handler
 when dialog 1 call Event1Handler
 DirectoryEntry ()
endproc

;**
;*
;* DirectoryEntry
;* The procedure DirectoryEntry displays...
;*
;* Calls:
;* Called by: Main, WhateverElse
;* Modifies globals: Var1
;*
;**
proc DirectoryEntry

 ;blank out the entry edit boxes
 NameIn = ""
 AreaIn = ""
 PhoneIn = ""
 CompanyIn = ""
 ;display the dialog box
 dialogbox 0 136 68 202 125 67 "Connection Directory Entry"
 text 1 17 16 34 11 "Name" left
 text 2 17 36 34 11 "Area Code" left
 text 3 15 56 52 11 "Phone Number" left
 text 4 15 76 34 11 "Company" left
 editbox 5 79 16 102 11 NameIn
 editbox 6 79 36 102 11 AreaIn
 editbox 7 79 56 102 11 PhoneIn
 editbox 8 79 76 102 11 CompanyIn
 pushbutton 9 140 107 40 13 "OK" OK DEFAULT
 enddialog
endproc

;**
;*
;* Event0Handler
;* The procedure Event0Handler processes the events from Dialog Box 0.
;* If the OK button was pressed, the contents of the edit boxes are
;* entered into the Connection Directory. Then the user is given the
;* choice of another entry or exit.
;*
;* Calls: AnotherEntry
;* Called by: Main (WHEN statement)
;* Modifies globals: none
;*
;**
proc Event0Handler
 ;variable for the event in Dialog Box 0
 integer Event0
 ;query for which event occurred
 dlgevent 0 Event0
 ;only take action if the OK button was pressed
 switch Event0
 case 9
 ;create a new connection directory entry
 dialadd DATA NameIn
 set dialentry access DATA NameIn
 set dialentry areacode AreaIn
 set dialentry phonenumber PhoneIn
 set dialentry company CompanyIn
 dialsave
 ;give the user a choice of another entry or exit
 AnotherEntry ()
 endcase

 PPaaggee 110022 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

 endswitch
endproc

;**
;*
;* AnotherEntry
;* The procedure AnotherEntry gives the user a choice of making another
;* entry or exiting the program.
;*
;* Calls: none
;* Called by: Event0Handler
;* Modifies globals: none
;*
;**
proc AnotherEntry
dialogbox 1 187 130 151 57 67 "Another Entry?"
 pushbutton 1 9 22 54 13 "&Another Entry"
 pushbutton 2 89 22 40 13 "&Exit"
enddialog
endproc

;**
;*
;* Event1Handler
;* The procedure Event1Handler precesses the events from dialog box 1. This
;* either exits or goes back to create another connection directory entry.
;*
;* Calls:
;* Called by: Main, WhateverElse
;* Modifies globals: Var1
;*
;**
proc Event1Handler
 ;variable for which event occurred
 integer Event1
 ;query for the event
 dlgevent 1 Event1
 ;switch on the event
 switch Event1
 ;another entry button
 case 1
 DirectoryEntry ()
 endcase
 ;exit button
 case 2
 exit
 endcase
 endswitch
endproc

Exercise 5b

@ Display the first 3 names (with their companies) in the Data section
of the default Connection Directory. The user should be able to
choose one and have it dialed. After the connection is made, the
script should exit. If Procomm is unable to make a connection, the
user should be given the option to exit or dial another number.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 110033 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

;*Exercise5b.was Sample Script
;**
;*
;* This script will display the first 3 names (with their companies) in
;* the Data section of the default Connection Directory. The user is
;* able to choose one and have it dialed. After the connection is made,
;* the script will exit. If Procomm is unable to make a connection, the
;* user is given the option to exit or dial another number.
;*
;**

;***
;* GLOBAL VARIABLES
;***
 ;variables for the 3 entries from the connection directory
string EntName[3], EntCompany[3]
 ;integer flag to indicate which entry was chosen
integer chose

;**
;*
;* MAIN
;* The Main procedure calls DataDialer to display the 3 possible names to
;* call. It also initializes the WHEN statement to process the events
;* in Dialog Box 0
;*
;* Calls: DataDialer
;* Modifies globals: none
;*
;**
proc main

 when dialog 0 call Event0Handler
 DataDialer ()

endproc

;**
;*
;* DataDialer
;* The procedure DataDialer displays the dialog box with the 3 entry choices
;* for the user to choose. Before that, it counts the total number of
;* entries to be sure we don't display an empty entry. Then it fetches the
;* name and company for each entry and displays the first 3.
;*
;* Calls: none
;* Called by: Main
;* Modifies globals: EntName, EntCompany
;*
;**
proc DataDialer
 ;count the total number of entries in the connection dir.
 integer NumEnts
 ;counter for the FOR loop
 integer Count
 ;maximum value for the Count
 integer CountMax

 ;count entries so we don't try to access more than exist
 dialcount DATA NumEnts
 ;set the CountMax to 2 or number of entries
 if NumEnts < 3
 CountMax = NumEnts - 1
 else
 CountMax = 2
 endif

 PPaaggee 110044 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

 ;retrieve the information for the entries
 for Count = 0 upto Countmax ; dialname zero-based.
 dialname DATA Count EntName[Count] ; Get name of entry.
 set dialentry access DATA EntName[Count]
 fetch dialentry company EntCompany[Count]
 set dialentry access OFF
 endfor
 ;display the entries and let the user choose
 dialogbox 0 6 61 452 121 67 "Connection Directory Entries"
 pushbutton 9 206 102 40 13 "Exit" OK
 text 2 15 32 101 11 EntName[0] left
 text 3 15 48 94 11 EntCompany[0] left
 text 4 160 32 94 11 EntName[1] left
 text 5 160 48 94 11 EntCompany[1] left
 text 6 325 32 94 11 EntName[2] left
 text 7 325 48 94 11 EntCompany[2] left
 pushbutton 10 14 71 62 13 "Dial this entry"
 pushbutton 11 176 73 62 13 "Dial this entry"
 pushbutton 12 339 74 62 13 "Dial this entry"
 groupbox 13 2 19 130 76 "Entry #1"
 groupbox 14 155 19 130 76 "Entry #2"
 groupbox 15 308 19 130 76 "Entry#3"
 enddialog

endproc

;**
;*
;* Event0Handler
;* The procedure Event0Handler processes the events from Dialog Box 0.
;* The Dialer procedure will be called with a flag set for which entry
;* is to be dialed.
;*
;* Calls: Dialer
;* Called by: Main (WHEN statement)
;* Modifies globals: chose
;*
;**
proc Event0Handler
 ;variable for which event occurred
 integer Event0
 ;query to see which event occurred
 dlgevent 0 Event0
 ;
 switch Event0
 ;push button 10 so dial the first entry
 case 10
 dlgdestroy 0 OK
 chose = 0
 Dialer ()
 endcase
 ;push button 11 so dial the second entry
 case 11
 dlgdestroy 0 OK
 chose = 1
 Dialer ()
 endcase
 ;push button 12 so dial the third entry
 case 12
 dlgdestroy 0 OK
 chose = 2
 dialer ()
 endcase
 endswitch
endproc

;**
;*
;* Dialer

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 110055 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

;* The procedure Dialer dials the chosen entry. If the remote system answers,
;* the script will exit. If there is no answer, the user may choose another
;* entry.
;*
;* Calls: DataDialer
;* Called by: Event0Handler
;* Modifies globals: none
;*
;**
proc Dialer

 dial DATA EntName[chose] ; Dial the current entry.
 while $DIALING ; Pause while dialing.
 yield
 endwhile
 pause 4 ; Pause to wait for carrier.
 if $CARRIER
 exit
 else
 DataDialer ()
 endif

endproc

Exercise 6a

@ Write a script that lets the user list fax files in a fax outbox directory
and choose one fax to send. Then the user is queried for the name
and fax number of the recipient in order to send the fax. After the
fax transmission ends, report to the user whether or not it was
successful.

;demonstrate selecting and sending a fax v1.00

;***
;*
;* EXERCISE6a.WAS
;* Copyright (C) 1999 Symantec Corporation
;* All rights reserved.
;*
;* This script is an example of the FAXSEND command using $FAXSTATUS to
;* determine if the fax was successful or not.
;*
;***

;***
;* GLOBAL VARIABLES
;***
string FaxOutBox ;full path for Fax OutBox
string FilesToFax ;text file that contains the names of files to fax
string FaxRecipient ;name of fax recipient
string FaxDial ;Number of fax recipient

;***

 PPaaggee 110066 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

;*
;* MAIN
;* The Main procedure fetches the current path for the fax outbox. It also
;* identifies the file to hold the names of the files to fax. Then it calls
;* ListFiles to display the possible files for the user.
;*
;* Calls:ListFiles
;* Modifies globals: FaxOutBox, FilesToFax
;*
;***

proc main

;these statements direct the script when an event occurs in a dialog box
when dialog 0 call Handler0
when dialog 1 call Handler1

;get the current path for the fax out box
fetch fax path outbox FaxOutBox

;define a name for the file which holds the list of files to be faxed
FilesToFax = "Faxes.txt"

;call the dialog box to display the list of files
ListFiles ()

endproc

;***
;*
;* ListFiles
;* The procedure ListFiles creates the dialog box which presents the list
;* of possible files to fax.
;*
;* Calls: none
;* Called by: Main
;* Modifies globals: none
;*
;***
proc ListFiles

dialogbox 0 8 20 148 169 71 "Choose File to Fax"
text 1 36 22 68 12 "Files in Fax OutBox" left

 dirlistbox 3 40 50 68 68 FaxOutBox Multiple FilesToFax
pushbutton 4 22 140 40 13 "OK" OK

 pushbutton 5 86 140 40 13 "Exit" CANCEL
enddialog

endproc

;***
;*
;* Handler0
;* The procedure Handler0 processes the events from dialog box 0. If the
;* clicks on OK, then we go on to next window. If the user clicks on Exit,
;* then we exit the script.
;*
;* Calls: GetRecipient
;* Called by: Main
;* Modifies globals: none
;*
;***
proc Handler0

integer Event0 ;holds the event number for dialog box 0

;determine which event happened

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 110077 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

dlgevent 0 Event0

switch Event0
;OK button so continue to next step

case 4
GetRecipient ()

endcase
;exit button so exit script

case 5
exit

endcase
endswitch

endproc

;***
;*
;* GetRecipient
;* The procedure GetRecipient displays a dialog box to obtain the
;* name and fax number. The user can then click on OK or Exit as before.
;*
;* Calls: none
;* Called by: Handler0
;* Modifies globals: FaxRecipient, FaxDial
;*
;***
proc GetRecipient

dialogbox 1 8 20 230 132 71 "Recipient"
 text 1 24 31 54 11 "Fax Recipient" left

text 2 24 72 48 11 "Fax Number" left
 editbox 3 92 31 110 12 FaxRecipient

editbox 4 92 72 110 12 FaxDial
 pushbutton 5 52 109 40 13 "OK" OK

pushbutton 6 147 109 40 13 "Exit" CANCEL
enddialog

endproc

;***
;*
;* Handler1
;* The procedure Handler1 processes the events from Dialog Box 1. It checks
;* to be sure the name and number were entered. Then it sends the fax.
;* The scripts reports on the success or failure of the fax then deletes
;* the text file which held the names of the file to fax.
;*
;* Calls:
;* Called by: Main, WhateverElse
;* Modifies globals: Var1
;*
;***
proc Handler1

integer Event1 ;holds the event number for dialog box 1
integer StatFax = 0 ;flag for the fax status -- initialized to 0

;obtain the event number
dlgevent 1 Event1

switch Event1
;OK button so prepare to send the fax

case 5
;check to see if the name was entered -- if not then go back and get it

if nullstr FaxRecipient
usermsg "The name of the fax recipient is blank"

 PPaaggee 110088 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

GetRecipient ()
endif

;check to see if the fax number was entered -- if not then go back and get it
if nullstr FaxDial

usermsg "The fax number of the recipient is blank"
GetRecipient ()

endif
;send the fax using the FIRST available modem

faxsend First FaxRecipient FaxDial Multiple FilesToFax
;wait here until the fax has completed sending

while StatFax <= 1
statfax = $FAXSTATUS
yield

endwhile
;report whether the fax was successful or failed

if statfax = 3
usermsg "Fax Sent Successfully"

else
usermsg "Fax Failed"

endif
;delete the text file with the files to be faxed and exit

delfile FilesToFax
exit

endcase
;exit button so exit without sending the fax

case 6
exit

endcase
endswitch

endproc

Exercise 6b

@ Create a dialog box that reports the current settings for Fax Retries,
Fax Retry Delay Interval, whether or not faxes are automatically
printed upon receipt, and whether or not faxes are deleted after
sending.

;Demonstration of fax fetch commands

;***
;*
;* NAME.WAS
;* Copyright (C) 1999 Symantec Corporation
;* All rights reserved.
;*
;* This script is a demonstration of fetch commands and a simple dialog box.
;*
;***

;***
;*
;* MAIN
;* The Main procedure performs fetches to retrieve some of the fax settings,
;* formats the information into strings and then displays the information in
;* a simple dialog box.

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 110099 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

;*
;* Calls: none
;* Modifies globals: none
;*
;***
proc main

integer NumRetry ;numeric and string values for number of retries
string StrRetry
integer DelayInterval ;numeric and string values for retry interval
string StrDelay
integer PrintOnReceipt ;numeric and string values for printing faxes
string StrPrint
integer DeleteOnSend ;numeric and string values for deleting faxes
string StrDeleteoOnSend

;fetch the current Setup Options for faxing
fetch fax retries NumRetry
fetch fax retrydelay DelayInterval
fetch fax recvprint PrintOnReceipt
fetch fax delpages DeleteOnSend

;format the current Setup Options for faxing
strfmt StrRetry "Number of Retries is %i" NumRetry
strfmt StrDelay "Retry Every %i MInutes" DelayInterval
if PrintOnReceipt

StrPrint = "Faxes Will Be Printed on Receipt"
else

StrPrint = "Faxes Will not Be Printed on Receipt"
endif
if DeleteOnSend

StrDeleteoOnSend = "Faxes Will Be Deleted after Sending"
else

StrDeleteoOnSend = "Faxes Will not Be Deleted after Sending"
endif

;display the current Setup Options for faxing
;The OK button destroys the window so we don't need to process the button event

dialogbox 0 8 20 264 169 71 "Set / Fetch Examples"
 text 6 90 8 82 11 "Selected Fax Information" left

text 1 22 31 212 11 StrRetry left
 text 2 21 55 212 11 StrDelay left

text 3 21 79 212 11 StrPrint left
 text 4 21 103 212 11 StrDeleteoOnSend left

pushbutton 5 112 144 40 13 "OK" OK
 enddialog

endproc

Exercise 7a

@ Write a script that will find your AUTOEXEC.BAT and report its size
and date. Check to see if MYAUTOEXEC.BAT exists in the
ASPECT directory. If it exists, rename it to MYAUTOEXEC.OLD.
Then copy AUTOEXEC.BAT to the ASPECT directory and rename
it to MYAUTOEXEC.BAT.

;*Exercise6a.was Sample Script
;**

 PPaaggee 111100 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

;*
;* MAIN
;* The Main procedure finds your AUTOEXEC.BAT and report its size and date.
;* The script then checks to see if MYAUTOEXEC.BAT exists in the ASPECT
;* directory. If it exists, it will be renamed to MYAUTOEXEC.OLD.
;* Then the script will copy AUTOEXEC.BAT to the ASPECT directory and
;* rename it to MYAUTOEXEC.BAT.
;*
;* Calls: Proc1, Proc2
;* Modifies globals: Var1
;*
;**
proc main

 ;variables to hold the date and size of the file
 string MyAutoDate
 long MyAutoSize
 ;locate the desired file
 findfirst "c:\autoexec.bat"
 ;if not found, notify the user and exit the script
 if FAILURE
 usermsg "Could not find autoexec.bat"
 exit
 endif
 ;convert the system variables to regular variables
 MyAutoSize = $FSIZE
 MyAutoDate = $FDATE
 ;report on the date and size of the desired file
 usermsg "The size of AUTOEXEC.BAT is %ld`n`rThe date is %s" MyAutoSize MyAutoDate
 ;look for myautoexec.bat in the current directory
 findfirst "myautoexec.bat"
 ;if it exists, rename it to .OLD
 if SUCCESS
 rename "myautoexec.bat" "myautoexec.old"
 endif
 ;copy autoexec.bat to the current directory
 copyfile "c:\autoexec.bat" "myautoexec.bat"
 ;report on thesucess or failure of the copy command
 if SUCCESS
 usermsg "autoexec.bat was copied successfully and renamed to myautoexec.bat"
 else
 usermsg "The file copying process failed"
 endif
endproc

Exercise 8a

@ Create a dialogue window to input 5 names, area codes, phone
numbers and company names. For each set of entries, create a
comma delimited line in a file. (A check on how well you do this
exercise is to import this file into the Connection Directory.)

;*Exercise8a.was Sample Script
;**
;*
;* This script creates a dialogue window to input 5 names, area codes,
;* phone numbers and company names. For each set of entries, the script

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 111111 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

;* creates a comma delimited line in a file. (A check on how well this
;* exercise is done is to import this file into the Connection Directory.)
;*
;**
 ;variables to store the input information
string NameIn, AreaIn, PhoneIn, CompanyIn

;**
;*
;* MAIN
;* The Main procedure creates the NAMES.TXT file to hold the comma delimited
;* list of names. Then it calls NamesInput to input the names and store them.
;* It also initializes the WHEN statement to handle events in Dialog Box 0.
;*
;* Calls: NamesInput
;* Modifies globals: none
;*
;**
proc main
 ;integer counter for the FOR loop
 integer counter
 ;command to process the events in Dialog Box 0
 when dialog 0 call Event0Handler
 ;open the file for the names list. CREATE it if
 ;doesn't exist. It is a TEXT file so add CR/LF to each line
 fopen 0 "names.txt" CREATE TEXT
 ;loop through 5 entries
 for counter = 1 upto 5
 NamesInput ()
 endfor
 ;close the file
 fclose 0
endproc

;**
;*
;* NamesInput
;* The procedure NamesInput creates a Dialog Box for the input of the
;* information for each entry.
;*
;* Calls: none
;* Called by: Main
;* Modifies globals: NameIn, AreaIn, PhoneIn, CompanyIn
;*
;**
proc NamesInput
 ;blank out the edit boxes
 NameIn = ""
 AreaIn = ""
 PhoneIn = ""
 CompanyIn = ""
 ;allow the user to input the names info
dialogbox 0 136 68 203 125 67 "Names Input"
 text 1 17 16 34 11 "Name" left
 text 2 17 36 34 11 "Area Code" left
 text 3 15 56 52 11 "Phone Number" left
 text 4 15 76 34 11 "Company" left
 editbox 5 79 16 102 11 NameIn
 editbox 6 79 36 102 11 AreaIn
 editbox 7 79 56 102 11 PhoneIn
 editbox 8 79 76 102 11 CompanyIn
 pushbutton 9 82 106 40 13 "OK" OK
enddialog
endproc

;**
;*
;* Event0Handler
;* The procedure Event0Handler processes the events in Dialog Box 0. If the

 PPaaggee 111122 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

;* OK button was pressed, the contents of the name and phone edit boxes
;* are formatted and written out to the file.
;*
;* Calls: none
;* Called by: Main (WHEN statement)
;* Modifies globals: none
;*
;**
proc Event0Handler
 ;variable for which event happened
 integer Event0
 ;string to hold the formatted line
 string FileLine
 ;query to see which event occurred
 dlgevent 0 Event0
 ;only take action if the OK button was pressed
 switch Event0
 case 9
 ;blank out the variable
 FileLine = ""
 ;format the information to a comma delimited list
 strfmt FileLine "%s, %s, %s, %s" NameIn AreaIn PhoneIn CompanyIn
 ;write the formatted information to the file
 fputs 0 FileLine
 endcase
 endswitch

endproc

Exercise 9a

@ Connect to the Symantec BBS using the Connection Directory to
make the modem connection. Go to the Top 10 list. Download the
first file using Xmodem transfer protocol.

;Sample for download and file I/O

proc main

 ;Dial the BBS using the Connection Directory entry
dial DATA "Symantec"
 ;Don't do anything else until we finish dialing
while $dialing

yield
endwhile
 ;set the desired protocol and its behavior
set PROTOCOL XMODEM

 set XMODEM OVERWRITE ON
 ;Waitfor query for name then transmit it

 waitfor "ame: "
 transmit "no name^M"
 ;Waitfor and transmit for "Is this you?"
 waitfor "you? "
 transmit "y"

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 111133 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

 ;Password
 waitfor "sword: "
 transmit "password^M"
 ;Connection data and then "press any key"
 waitfor "Key-"
 transmit "^M"
 ;1st menu -- choose File
 waitfor " settings"
 transmit "f"
 ;2nd menu -- choose "top 10"
 waitfor "settings"
 transmit "o"
 ;3rd menu -- choose "US products"
 waitfor "menu"
 transmit "1"
 ;4th menu -- choose option 1
 waitfor "menu"
 transmit "1"
 ;verify download -- press any key
 waitfor "Key-"
 transmit " "
 ;select transfer protocol -- choose zmodem. The
 ;transfer starts immediately
 waitfor "Choose one (Q to Quit): "
 transmit "x"
 ;wait for the remote host to tell us to start download
 ;procedure
 waitfor "start"
 getfile XMODEM "download1.txt"
 while $xferstatus
 yield
 endwhile
 ;When the transfer completes, there will be a message
 ;to "Press any Key". Wait for that message then press
 ;any key.
 waitfor "Key"
 transmit " "
 ;Wait for the next menu then press "g" for goodby and
 ;"1" for exit.
 waitfor " menu"
 transmit "g"
 pause 1
 transmit "1"
 ;Pause for connection to clean up then clear the screen
 pause 2
 clear
endproc

 PPaaggee 111144 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

Index

$faxstatus, 63

$XFERSTATUS, 77

addfilename, 69

Arrays, 20

atof, 39

atoi, 38

atol, 39

Breakpoint, 23

Carriage return, 38

Case, 18, 51

chdir, 71

checkbox, 54

combobox, 55

Compiling, 21

Connection Directory, 57

copyfile, 70

DDE, 79

DDE Client

ddeadvise, 84

ddeexecute, 84

ddeinit, 84

ddepoke, 84

dderequest, 84

ddeterminate, 84

ddeunadvise, 84

DDE Host

advise, 83

ASPECTCMD, 81

Capture, 81

dialload, 82

Execute, 82

formats, 82

getfile, 82

Halt, 82

help, 83

pwexit, 82

sendfile, 82

status, 83

sysitems, 82

topics, 82

transmit, 82

DDE Host

Dial, 81

DDE Session, 80

ddeinit, 80

Debugging, 21

Compile for debug option, 23

delfile, 70

Dialing commands, 59

Dialog boxes

dlgevent, 51

Events, 50

Modal, 46

Modeless, 46

Programming, 47

Styles, 45

Dialog editor, 40

Align controls, 44

Controls, 41

Layout assistance, 44

Make same size, 44

Properties, 41

Space evenly, 44

Tab order, 44

IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg PPaaggee 111155 ooff 111177

11/23/99 COPYRIGHT  1999 SYMANTEC

INTERMEDIATE ASPECT SCRIPTING.DOC ALL RIGHTS RESERVED.

dialogbox, 52

dirlistbox, 56

dirpath, 56

dlgdestroy, 53

dlgevent, 51

dlgsave, 53

dlgupdate, 53

dos, 72

DOS file commands, 65

editbox, 53

Editor, 11

enddialog, 52

endgroup, 55

Escape sequences, 38

Events, 50

Failure/Success, 14

fax commands, 64

faxsend, 61

faxstatus, 63

fclose, 73

fcombobox, 55

File I/O Procedures, 73

File Transfers, 77

fileget, 69

fileset, 69

findfirst, 65

findnext, 65

flistbox, 55

fopen, 73

Format specifiers, 37

fputs, 73

fstrfmt, 75

ftext, 53

ftoa, 39

fullpath, 70

getdir, 71

getfile, 77

getfilename, 69

getpathname, 69

Help, 11

isfile, 68

itoa, 39

Layout assistance, 44

Line feed, 38

listbox, 55

Logical operators, 13

Loops, 14

ltoa, 39

makepath, 70

mkdir, 71

Modal, 46

Modeless, 46

numtostr, 39

Operators, 13

Parameter passing, 19

profilerd, 75

profilewr, 75

pushbutton, 54

radiogroup, 55

rename, 71

Reserved words, 12

rmdir, 72

rstrcmp, 31

run, 72

sdlgfopen, 27

sdlginput, 25

sdlgmsgbox, 26

sdlgsaveas, 28

sendfile, 77

Set / Fetch

dialentry, 57

dialentry access, 57

dialentry areacode, 58

dialentry company, 58

dialentry country, 58

dialentry dialnumberonly, 58

dialentry longdistance, 58

dialentry phonenumber, 58

 PPaaggee 111166 ooff 111177 IInntteerrmmeeddiiaattee AASSPPEECCTT SSccrriippttiinngg

COPYRIGHT  1999 SYMANTEC 11/23/99

 ALL RIGHTS RESERVED. INTERMEDIATE ASPECT SCRIPTING.DOC

dialentry scriptfile, 59

shell, 72

shortpath, 70

splitpath, 70

Standard dialog boxes, 25

sdlgfopen, 27

sdlginput, 25

sdlgmsgbox, 26

sdlgsaveas, 28

strcat, 36

strchr, 33

strcmp, 30

strdelete, 33

strextract, 34

strfind, 32

strfmt, 36

stricmp, 31

String comparisons

rstrcmp, 31

strcmp, 30

stricmp, 31

strncmp, 31

strnicmp, 31

String formatting

strfmt, 36

String miscellany

strcat, 36

strlen, 36

String parsing

strextract, 34

strtok, 35

String replace or insert

strdelete, 33

strinsert, 33

strreplace, 33

strupdt, 33

substr, 33

String searches

strchr, 33

strfind, 32

strrchr, 33

strsearch, 33

strinsert, 33

strlen, 36

strncmp, 31

strnicmp, 31

strrchr, 33

strreplace, 33

strsearch, 33

strtok, 35

strtonum, 39

strupdt, 33

Styles, 45

substr, 33

Success/Failure, 14

Switch, 18, 51

text, 53

When, 16

Dialog, 17, 50

Elapsed, 18

Iskey, 17

Quiet, 17

Target, 17

Userexit, 18

While loops, 14

