Symantec Confidential

Extending Procomm Plus®
Using Dynamically Linked Protocols

Table of Contents

INTRODUCTION

DLP OVERVIEW

AN OVERVIEW OF PROCOMM PLUS CALLBACK FUNCTIONS
Access To Windows SDK Comm Functions

Procomm Plus Functions Specifically Intended to Support DL Ps

XMODEM.DLP - A SAMPLE DLP
Multitasking and Reentrancy Considerations

Program Components: Building the Sample DLP

DATA STRUCTURES

A CLOSER LOOK AT DLP ENTRY POINTS

ADVANCED SETUP ENTRY POINTS

INDEX OF FUNCTIONS

DLP Specification - Procomm Plus Version 4.8

11

13

Page 1 of 13

Symantec Confidential

Introduction

See the document Procomm Plus® Interface Specification Overview and Shared
Callback Functions for introductory information and callback functions which can be used by
any DLXx.

DLP Overview

A DLP is a custom file transfer protocol written as a standard Windows DLL. It has a DlIMain()
and library entry points that are defined as exported functions in the .DEF file. All DLPs must
have certain standard entry points; Procomm Plus itself makes many of its services available
to the DLP through exported callback procedures.

P Note: This document documents the DLP and its entry points; you should also
obtain Procomm Plus® Interface Specification Overview and Shared Callback
Functions, which describes Procomm Plus’s callback functions.

DLPs have a set of standard library entry points, which are summarized here:

GET_DLL_CAPS () - Called by Procomm Plus at the start of a file transfer session.
It retrieves attribute flags from the DLP, which indicate whether certain tasks related
to file transfers should be performed by Procomm Plus. For example, whether
Procomm Plus should watch for autodownload strings in the data stream or whether
Procomm Plus must ask the DLP to display an Advanced Settings Dialog.

STARTDLL_XFER () - Called by Procomm Plus to initiate the file transfer.

DLL_XFER () - Called periodically by Procomm Plus (approximately 18 times /
sec.). The DLP can utilize the DLL_XFER call as a rudimentary multitasking state-
switcher while the file transfer is in progress.

INITDLGITEMS () - Called by Procomm Plus prior to displaying the Advanced
Settings Dialog Box. InitDlgltems() should initialize the dialog contents according to
the protocol’s default values.

SETWM_COMMAND () - Procomm Plus inserts a hook into the Advanced Settings
Dialog Box processing, allowing the DLP to perform any special processing when a
related dialog control is selected or altered.

SETDEFAULTS () - Called by Procomm Plus when the user selects “Use Defaults”
from the “Modify Option Set” dialog accessed via the “Transfer Protocol” setup
dialog. The various data fields should be reset to their default values.

GETDLGITEMS () - Called by Procomm Plus when the Advanced Settings Dialog
Box is closed by the user. The dialog’s various field and checkbox values are
moved into their appropriate data structure locations.

DLP Specification - Procomm Plus Version 4.8 Page 2 of 13

Symantec Confidential

An Overview of Procomm Plus Callback Functions

Access To Windows SDK Comm Functions

Procomm Plus renames and exports each of the nine standard Windows Comm Functions for
access by a DLx. Their definitions are more fully explained in Procomm Plus for Windows™
Interface Specification Overview and Shared Callback Functions.

Procomm Plus Functions Specifically Intended to Support DLPs

In addition to the standard Windows Comm Functions, Procomm Plus also exports the
following functions, which are of particular importance to DLP authors:

EXPORTED BOOL CALLBACK P_FileRxTX(int rcv, LPSTR ptr)

rcv should be 0 if sending a file and non-zero if receiving a file. If non-zero the file
will be created if necessary.

ptr should point to a null terminated string containing the filename to open. It must
not contain any path information. The routine will use the path identified in
pd.szTempDir.

Should be called by the DLP to open a file. Procomm Plus opens the file, handles
any error conditions associated with opening the file, and updates the following
fields in the pd data structure:

pd.hCommpFile - receives the file handle once the file is opened or -1 if
no file is currently open.

pd.flen - contains the length (in bytes) of the current file being
transferred.

pd.fdate - contains the date the file was last updated (DOS file date
format) or O if the file is being received.

pd.fftime - contains the time the file was last updated (DOS file time
format) or O if the file is being received.

pd.szFullPath - contains the full path and filename of the current file or
NULL if no file is currently open.

As stated earlier, the file will be opened in the subdirectory identified in
pd.szTempDir, and the function will build pd.szFullPath.

DLP Specification - Procomm Plus Version 4.8 Page 3 of 13

Symantec Confidential

P Note: Do not call this function to open a file if you are also setting the
DLL Capabilities bit requesting Procomm Plus to automatically open the
file for you. See the description of the GET_DLL_CAPS entry point for
further details.

EXPORTED void CALLBACK P_XferSuccess (void)

Should be called by the DLP to indicate a successful file transfer. This should be
called before P_EndXfer().

EXPORTED void CALLBACK P_XferFail (void)

Should be called by the DLP to indicate a failed file transfer. This should be called
before P_EndXfer().

EXPORTED void CALLBACK P_EndXfer (void)

Should be called by the DLP to exit file transfer mode and return to terminal
emulation mode. If the file named by the pd.hCommpFile field is still open, Procomm
Plus will close it. If the file being closed was received, Procomm Plus sets the file's
date and time stamp. If supporting batch transfers you should only call this routine
after the last file has been transferred. You should also close the file named in
pd.hCommpFile before calling P_FileRxTX() to open the next file in the batch.

EXPORTED void CALLBACK P_ShowXferBox (int send)
send should be non-zero if sending and zero when receiving.

If the DLL_CAP_SHOWXFER flag is NOT used in the GET_DLL_CAPS() routine of
the .DLP then P_ShowXferBox should be called once the file transfer is underway.
This function notifies Procomm Plus to display the standard file transfer status
dialog box. Prior to calling this function, the following fields need to be set to
appropriate values:

DLP Specification - Procomm Plus Version 4.8 Page 4 of 13

Symantec Confidential

pd.bdiag - should be non-zero to enable the display of the file transfer
status dialog box.

pd.flen - should equal the length (in bytes) of the file currently being
transferred, or O if the length is unknown.

pd.runcnt - should equal the number of bytes transferred thus far.

L]
EXPORTED void CALLBACK P_TimeToGo (void)

Should be called periodically by the DLP while the standard file transfer status
dialog box is displayed. This function notifies Procomm Plus to display updated
status fields in the file-transfer dialog box. The DLP should update the following
field before calling this function:

pd.runcnt - should equal the current total number of bytes transferred.

. __|
EXPORTED void CALLBACK P_LastError (int i)

i should be set to the index in the common error string table.

Should be called by the DLP when it detects an error in the file transfer. This
function notifies Procomm Plus to display an appropriate error message in the file
transfer status dialog box.

P Note: A list of supported error messages is not provided in this
document. Write a test routine to determine if there are any messages
useful to the DLP. If not, simply update the transfer dialog error field
directly.

L]
EXPORTED void CALLBACK P_StartGif (void)

If the DLP determines that it is receiving a .GIF file, and the user wants to view the
.GIF as it is received, the DLP should call this function, advising Procomm Plus to
initialize the GIF Viewer.

DLP Specification - Procomm Plus Version 4.8 Page 5 of 13

Symantec Confidential

EXPORTED BOOL CALLBACK P_FeedDisplay (BYTE ch)
ch contains the byte to be displayed.

Should be called by the DLP as each byte of a .GIF file is received, notifying
Procomm Plus to update the display.

EXPORTED void CALLBACK P_DeletePartialFile (void)

In the event that a file transfer operation prematurely terminates, what should the
receiving system do about the partial file it has written to disk? If the protocol
provides a mechanism for restarting a file transfer at any point in the file, you may
wish to keep the good portion of the file which has already been received. In most
cases, however, it is desirable to delete the partial file. If a DLP simply calls
P_EndXfer, the partial file will be closed and saved. Calling P_DeletePartialFile
insures that the file identified in pd.szFullPath is deleted.

XMODEM.DLP - a Sample DLP

To illustrate the construction of a Dynamically Linked Protocol, source files for xmodem.dlp
are provided. In the discussions that follow, assume that xmodem.dlp is being used instead of
Procomm Plus’s built-in XMODEM protocol.

Multitasking and Reentrancy Considerations

Suppose you wanted to download a file using XMODEM on COM1 in one instance of
Procomm Plus, and upload another file using XMODEM on COMZ2 in a second instance of
Procomm Plus. Only one instance of the DLP will be loaded, but it must be capable of
simultaneously uploading and downloading. How can this be done?

DLPs must be optimized to run well in a multitasking environment. Tasks should be designed
to be small, quickly-executing, discrete events. The objective is to execute a small segment of
the protocol quickly, then return control to Procomm Plus so that other tasks can run.
xmodem.dlp uses a simple state-machine to implement the XMODEM file transfer protocol.

When sending a file, the XMODEM protocol builds 128-byte blocks, transmits them to the
receiving side, then waits for the receiver to respond with either an ACK or NACK. The
xmodem.dlp builds a block, transmits it, and returns to Procomm Plus to let other tasks run,
instead of wasting processor time while waiting for the receiver’s response.

DLP Specification - Procomm Plus Version 4.8 Page 6 of 13

Symantec Confidential

Every timer-tick, Procomm Plus calls into the DLP’s “DLL_XFER” entry point, causing the
appropriate state-execution routine to be dispatched. When sending a file, the “DLL_XFER”
state-machine calls the “WAITACK?” routine. “WAITACK” checks the receive buffer to
determine whether the other side has sent an ACK or NACK. If not, “WAITACK” returns to
“DLL_XFER?”, which in turn returns to Procomm Plus. When an ACK has been received, the
WAITACK” routine will call the “XMODEM_TX” routine to transmit the next block, and the
cycle repeats until the entire file has been transmitted.

When xmodem.dlp is receiving a file, the process is quite similar. On every timer tick,
Procomm Plus calls the “DLL_XFER” entry point. The receive-processing states alternate

RXING” and “NOCHAR”. “RXING” attempts to read 128 bytes from the Rx Buffer,
validate the data received, and transmit either an ACK or NACK. As soon as a response is
transmitted, if any, the “RXING” routine returns to Procomm Plus. If there aren’t enough bytes
in the Rx Buffer to assemble a full 128-byte block, the state is changed to “NOCHAR” and the
DLP returns to Procomm Plus. On each subsequent timer tick, Procomm Plus again calls into
the DLP. Eventually, the “NOCHAR” routine will be able to complete the 128-byte block. The
next processing state is set to “RXING” and the DLP returns control to Procomm Plus. This
cycle repeats until the entire file has been received.

P Note: For simplicity’s sake, this discussion ignores the TIMEOUT and ERROR
states.

A DLP must be able to support multiple simultaneous file transfers. In our example above, it is
quite likely that on one timer tick, one instance of Procomm Plus will ask xmodem.dlp to send
the next block of its file, and on the next timer tick, the second instance of Procomm Plus might
ask xmodem.dIp to receive the next block of a second file. This leads to an interesting
guestion: where is the data saved?

The answer is that each instance of Procomm Plus allocates and locks a block of memory for
use by the DLP. This data area is defined by the pd data structure. Within the pd data
structure, there is a 66-byte work area (labeled “temp”), which the DLP can use to store
instance-specific data. When the DLP is called, a pointer to the pd structure is passed to the
DLP, allowing it to store its data at pd->temp.

P Note: There is a tiny bit of global memory defined in xmodem.dlIp, but it is strictly
intended for data unrelated to a particular instance of Procomm Plus.

You should now be able to understand how a DLP is able to handle our example of
simultaneous access by two instances of Procomm Plus. Each instance of Procomm Plus
starts a file transfer, thereafter calling the DLP’s state-machine entry point on every timer tick
while the file transfer is ongoing. Each time the DLP is called, it performs a small piece of the
file transfer, then saves its state in the caller’s block of memory. Thus, other instances of
Procomm Plus can call the DLP without fear of corrupting another task’s data.

Program Components: Building the Sample DLP

You should have received a set of files with this document. These files contain sample code
used to build the simplest of all possible DLPs - an XMODEM file transfer protocol. We chose

DLP Specification - Procomm Plus Version 4.8 Page 7 of 13

Symantec Confidential

XMODEM because we wanted to focus on the DLP mechanism itself and minimize any
obfuscation which might result from using a more complex protocol. The following files are
necessary to build the sample DLP:

makefile.dlp The input file to Microsoft's NMAKE.
xmodem.c The main source code module for XMODEM.DLP.

xmodem.h An XMODEM-specific include file containing data structures and
function prototypes.

cbackdlx.h Definition file containing TYPEDEFS and function prototypes for all
Procomm Plus callback functions.

pwdlx.h Definition file containing standard Procomm Plus structures,
#defines, and TYPEDEFS used by DLPs.

pwdefdlx.h Definition file containing DLP-specific structures, #defines, and
TYPEDEFS.

xmodem.rc Input file for Microsoft's Resource Compiler. It contains a table of all
strings displayed as messages by the DLP and defines the Advanced Setup Dialog
Box.

xmodem.def Input file for Microsoft’s Linker. It lists the exported DLP entry points.

xmodem.Ink Input response file for Microsoft’s Linker.

You will also need the following products:
Microsoft ® 32-bit C/C++ Optimizing Compiler Version 10.20 or later.
Microsoft ® 32-Bit Incremental Linker Version 4.20 or later.

Microsoft ® Program Maintenance Ultility Version 1.6 or later.

Install these files on your system and invoke the NMAKE program; it will build xmodem.dlp.
Then, simply copy xmodem.dIp to the same subdirectory where you installed Procomm Plus.

DLP Specification - Procomm Plus Version 4.8 Page 8 of 13

Symantec Confidential

Data Structures

Very little data is defined as global memory in a DLx. Since multiple instances of Procomm
Plus may interleave their accesses to a DLx, you should not use global data items to store
data unigue to a specific instance. In the sample xmodem.c, several pointers are defined in
global memory, but a study of the code will reveal that these pointers are reloaded each time
one of the DLP’s entry points is called. The values used to reload these pointers are passed in
by Procomm Plus when it calls the DLx. The only reason they are globals is that it is slightly
more efficient to refer to global variables (which by default are accessed via the DS register)
than to refer to local variables (which have the BP register override). Admittedly, this is a minor
tweak; some programmers believe that global variables should be avoided, and may choose to
use local variables. We have included this example to illustrate one way to increase file
transfer speed by a few CPS.

Most of the data used by xmodem.c reside in two memory blocks allocated by each instance
of Procomm Plus. Most of the general options used by Procomm Plus and a DLP to control the
file transfer are defined in a structure named pd. The pd data structure is defined in
pwdefdlx.h with the PROTOSET typedef. When Procomm Plus calls either the
STARTDLL_XFER() or the DLL_XFER() entry point in a DLP, it passes a pointer to its pd data
structure. Contained in the block defined by the pd data structure are 66 bytes labeled temp,
which are available for any purpose by a DLP. Xmodem.dlp uses some of the temp area to
save instance-specific data. This data area is temporary, but usable throughout the current
protocol session. For an example, see the INSTANCEDATA structure in xmodem.h.

The second major data structure shared by Procomm Plus and a DLP is defined in xmodem.h
with the ADVANCEDSET typedef. This is a 325-byte block of memory allocated by Procomm
Plus, intended to be used to save data related to a protocol’'s Advanced Setup options. All 325
bytes are restored from disk when Procomm Plus is started, and saved to disk when Procomm
Plus Setup is exited with the OK push button. A pointer to this memory block is passed as an
argument in several of the DLP entry points.

P HINT: If your Advanced Setup options don’t need all 325 bytes, the unused area is
available to your DLP for storing additional instance-specific data. However, since this
area is saved and restored, you may need to explicitly initialize any temporary data
fields you define in this area. Keep in mind that each active instance of Procomm Plus
can cause this data area to be saved to disk, so treat the use of this area as temporary
for the current protocol session. An appropriate time to perform initialization of this
temporary memory would be at the top of STARTDLL_XFER().

Message strings are defined in the resource file, xmodem.rc. To facilitate the international
versions of Procomm Plus, all strings were moved from the .C and .H files into the .RC files,
where they are defined as indexed items in STRINGTABLE.

A Closer Look at DLP Entry Points

Xmodem.c demonstrates the bulk of the DLP. As mentioned earlier, all DLPs have a set of
standard entry points of interest to developers. There is also one other standard entry point
that we can dispense with fairly quickly:

DLP Specification - Procomm Plus Version 4.8 Page 9 of 13

Symantec Confidential

int WINAPI DIIMain (HINSTANCE hinstance, DWORD dwReason,
LPVOID IpReserved)

When Procomm Plus requests Windows to load a DLx, Windows will always call the
DlIMain procedure in the DLx. However, the only real processing done by DIIMain is
to save the DLx’s Instance Handle.

The remaining entry points are much more important to a DLP:

WORD CALLBACK GET_DLL_CAPS (LPSTR Iptr)

Upon start-up, Procomm Plus scans for any DLxs in the Procomm Plus installation
directory. If one is found, Procomm Plus calls into the DLx's GET_DLL_CAPS()
entry point. GET_DLL_CAPS() sets bit flags in a “capabilities” word which is
returned to Procomm Plus. The bit flag values are defined in pwdefdIx.h with the
following meanings:

DLL_CAP_AUTODOWNLOAD (value 0x0001). The sender will transmit
an auto-download sequence to the receiver. When Procomm Plus
detects the sequence, it should automatically jump into file transfer
mode. If the protocol supports auto-download sequences, Procomm Plus
passes a pointer to a string (the Iptr parameter) when it calls
GET_DLL_CAPS(); the DLP should copy the auto-download target
string to wherever the pointer is pointing. This string can be up to eleven
characters in length, and may contain *?’ wildcard characters indicating
that any character will match at that character position within the string.

DLL_CAP_MULTISEND (value 0x0002). The protocol is capable of
batching together several files and sending them with one file transfer
request. Enabling this option allows a user to select multiple files in
Procomm Plus’s file transfer dialog box. You should also make sure bit
0x0004 =1 to let Procomm Plus handle opening the files in the list.

DLL_CAP_PWOPENFILE (value 0x0004). Procomm Plus should open
the file, as opposed to putting the file open code in the DLP. Normally
set ON unless special file handling is required.

P Note: If this flag is not set ON, the DLP must open the file and
update the same fields in PROTOSET in a manner similar to the
Procomm Plus callback function, P_FileRxTX(). This flag should be set
ON if multiple files are being sent as one batch. For more information
about P_FileRxTX(), refer to the Procomm Plus Interface Specification.

DLL_CAP_RCVNEEDNAME (value 0x0008). The protocol allows the
filename of a transferred file to be included in the data stream, meaning

DLP Specification - Procomm Plus Version 4.8 Page 10 of 13

Symantec Confidential

that Procomm Plus doesn’t need to prompt the user for a filename on the
receiving side of the transfer. When the DLP receives the filename, it
should call P_FileRxTX() to open the file.

DLL_CAP_SHOWXFER (value 0x0020). Procomm Plus should display
the standard file transfer status box.

DLL_CAP_ADVANCED (value 0x0080). The protocol requires non-
standard optional parameters, meaning that Procomm Plus needs to call
the Advanced Setup dialog box. This call will take place when the user
selects the Setup option from Procomm Plus’s menu.

int CALLBACK STARTDLL_XFER (PROTOSET *pd, MAIN *mn, HWND hwnd,
struct ADVANCEDSET *AdvSet, int send, int from_auto)

Tells the DLP to initiate the file transfer. Procomm Plus passes in pointers to its pd
and mn data structures, as well as two flags that tell the DLP whether the file is to
be sent or received, and whether this request to start a transfer was the result of a
received auto-download sequence.

One of the “capabilities” discussed in the previous section was a flag (0x0004)
indicating whether the file would be opened by Procomm Plus or the DLP. If this
flag = 0, the DLP must open the file. In this case, the STARTDLL_XFER() code is
responsible for updating the pd data structure after the DLP opens the file. For
more details, see the discussion of P_FileRxTX().

int CALLBACK DLL_XFER (PROTOSET *pd, MAIN *mn, HWND hwnd,
struct ADVANCEDSET *advset, int send)

Called periodically (approx. 18 times / sec.) by Procomm Plus. The sample DLP
uses this pseudo timer interrupt to drive a rudimentary multi-tasking state-switcher
while the file transfer is in progress.

Advanced Setup Entry Points

The remaining three function calls deal with the Advanced Setup Options Dialog Box. If your
new protocol requires setting custom options, you may want to create a special Setup Options
Dialog Box. If your protocol is selected as the current protocol, and the user selects the
Procomm Plus Setup menu option, your dialog box will be displayed.

To create a custom Setup Options dialog, define your dialog box with ID number 14600; all
controls on the dialog must be numbered in the range of 14601 up to 14699. Make certain
that the DLP sets bit 0x0080 when the GET_DLL_CAPS() entry point is called. This will cause
Procomm Plus to call your dialog box during Setup time. Also, use the 325 byte area pointed to
by *AdvSet for saving any setup data, as Procomm Plus will save and restore that area.

DLP Specification - Procomm Plus Version 4.8 Page 11 of 13

Symantec Confidential

void CALLBACK INITDLGITEMS (HWND hDlg, struct ADVANCEDSET *AdvSet)

Called by Procomm Plus prior to displaying the Advanced Setup Options Dialog

Box. InitDIgltems() should initialize the dialog contents according to the protocol’s
default values.

BOOL CALLBACK SETWM_COMMAND (HWND hDLG,
struct ADVANCEDSET *AdvSet, int Id, int Cmd)

Procomm Plus inserts a hook into the Advanced Settings Dialog Box processing,

allowing the DLP to perform any special processing when a related dialog control is
selected or altered.

Id field refers to the ID of the control on the dialog box receiving this
command (Cmd).

Cmd is a standard control notification code as defined in windows.h. For
example, CBN_SELCHANGE.

BOOL CALLBACK SETDEFAULTS (HWND hDlg, struct ADVANCEDSET *AdvSet)

Called by Procomm Plus when the user selects “Use Defaults” from the “Modify

Option Set” dialog accessed via the “Transfer Protocol” setup dialog. The various
data fields should be reset to their default values.

BOOL CALLBACK GETDLGITEMS (HWND hDlg, struct ADVANCEDSET *AdvSet)

Called by Procomm Plus when the user closes the Advanced Settings Dialog Box.

The dialog box’s various field and checkbox values should be moved into their
appropriate locations in the AdvSet structure.

DLP Specification - Procomm Plus Version 4.8 Page 12 of 13

Symantec Confidential

Index of Functions

[I = PSPPI 12
DIIIVIUIN .. n e 11
GET _DLL_CAPS .ottt ettt e et 11
GETDLGITEMS . ..ot e e ettt e e e et aa e e e et b e e ettt s e e eeaaa e eeesbanaaaees 13
INITDLGITEMS ... ettt ettt e e et e e e e et e e e e e b e e e eeba e e e eetan e e eeenanas 13
e B =T = (=T o= T = | T 7
e =1 Yo G = 5
e == T0 1= o] = S 7
P ERXT X vttt ettt et et et et et et et et et et ee e e ettt et et et et et et et es et et et ettt et et et et et et et ettt e et en et 4
e = S =t o PRSP 6
ST 01010 =T = o G 5
S €= 1 X 6
N T 4 =21 10 o S 6
S =1 = 11 5
1= ST U Lo o =T 5
Y ol I B o U R I T U TUPUPTRRUPPIN 13
SETWM_COMMAND ...ttt e ettt e e et et e e et et e e e eetaa e e eeebaaaaees 13
STARTDLL_XFER ...ttt e e et e e e et e e e e et e e e eeaaaaaees 12

DLP Specification - Procomm Plus Version 4.8

Page 13 of 13

