Symantec Confidential

Extending Procomm Plus®

Using Dynamically Linked Terminal Emulations

Table of Contents

INTRODUCTION

DLT OVERVIEW

DLL ENTRY POINT

M essages

RECORD MODE

OVERSPRAY

MOUSE INTERFACE
L eft-button Double Clicks
L eft-button Click and Drag Actions

Right-button Clicks

THE KEYBOARD

GRX FUNCTIONS

DLT Specification - Procomm Plus Version 4.8

Page 1 of 21

13

13

13

14
14
14

15

16

18

Symantec Confidential

STRUCTURES

ATTACHED CODE FILES

INDEX OF FUNCTIONS

DLT Specification - Procomm Plus Version 4.8

Page 2 of 21

19

19

20

Symantec Confidential

Introduction

See the document Procomm Plus® 32 Interface Specification Overview and Shared
Callback Functions for introductory information and callback functions which can be used by
any DLXx.

DLT Overview

A DLT is an emulation DLL. If a DLT is detected, by having the filetype .dIt and being in the
same directory as pw4.exe, it will be loaded and queried as to its capabilities. The name of its
emulation(s) and whether it requires continuous timer calls at all times are among the
information it may be expected to return.

The DLL will be given Startup, Reset, and Shutdown calls for its internal state control. It will
be provided with various resources such as buffered file I/O, virtualized Comm functions,
handles to windows that it needs, an open printer DC, and a timer call. When called off the
timer, the DLL will poll for characters and display them. The DLL will be called with various
other commands such as print screen, capture to disk, etc. The DLL will own its display context
and can use it at will.

When the Startup() function is called, the handles to the terminal window will be passed in and
the message procedures for it will be switched by the DLL to its own handler. Multiple
instances of Procomm Plus calling the DLL must be supported. One method is suggested in
the sample code simpldlt.c. Since Procomm Plus requires a dedicated timer, it can reasonably
be assumed that no more than 16 instances will be running at one time.

The current state of the interface design is presented below. The current state of the interface
code is defined by the DLT-related header files:

gpwindIx.h
pwdlx.h
xdlt.h
menudIx.h
ddirdlx.h
cbackdlx.h
menudIx.h
kbdredIx.h

vxprtdlx.h

DLT Specification - Procomm Plus Version 4.8 Page 3 of 21

Symantec Confidential

gathrdlx.h

Also reference the file simpldlt.c which contains simple but functional emulation sample code.

DLL Entry Point

The DLL will export a single entry point which will be called with a function code defining the
purpose of the call, a pointer which will point to whatever is needed by the function code, and
a pointer to the pw_dIt structure. The pw_dlt structure is defined in detail in xdlIt.h, and
contains all necessary information for the emulation to run and also provides a place for the
DLL to communicate information back to Procomm Plus.

___|
int EXPORTED PASCAL DLT_Interface (int functioncode, void * Ipvoid, LPPW_DLT Ippw_dIt)

The function codes and associated special pointers are defined here. If there is
no special pointer defined, it will be sent as a NULL.

P Note: The pointer to the pw_dlt structure will not always be sent to
the DLT. When it is sent, it allows the DLT to know which instance of
Procomm Plus is calling it. When it is not sent, enough information will
be passed in the accompanying structure that the DLT will not need to
know which instance is calling it. Such functions are clearly marked.

The DLT_Interface() call must set up in the DLL such that if it does not handle a
particular functioncode it will return DLT_FUNCTION_NOT_IMPLEMENTED
(defined in xdlIt.h). This allows Procomm Plus to determine whether the DLT
was able to handle the specific function code.

Procomm Plus has complete control over the keyboard, which can make keyboard control
difficult for DLT’s. In particular, keyboard processing occurs in the main message loop rather
than in any of the window procedures. Thus, even subclassing Procomm Plus does not
provide total keyboard control - only a message hook can truly wrest control. As an alternative,
DLLs are provided with a set of three files which Procomm Plus reads and uses to set its
keyboard mappings.

___|
Startup (IpStartupStruct)

Startup() swaps the window procedure in hWndTerminal to the DLT’s window
procedure, then sets up the buffers and prepares to be called by Reset(),
Timer(), and TerminalPollExt(). If Startup() returns FALSE, then Procomm
Plus will not switch to the DLT emulation, but will remain in its current emulation.

The emulation defined in the IpStartupStruct->nEmulationRequested should
be initialized by the .DLT. For example, if the DLT supports three different
emulations then the struct will contain a O, 1, or 2 to define which of the
emulations should be initialized. The DLT should return the Ippw_dIt-
>DLLMagiclndex set to a value that allows subsequent calls to be identified as
belonging to this instance of Procomm Plus.

DLT Specification - Procomm Plus Version 4.8 Page 4 of 21

Symantec Confidential

At start-up time, various things can be set or changed in the emulation. There is a string
in the StartupStruct into which can be copied the name of an accelerator file, which
defines what is sent for each key that Procomm Plus defines as an accelerator (for
definition of accelerator, see above).

P Note: For more information, refer to the code example.

___|
Terminal (NULL)

P Note: Starting with PROCOMM PLUS version 3.0, this function has
been superseded by the TerminalPollExt() function, and thus all terminal
polling code should be implemented there. For PW3.xx DLT emulations,
Terminal() should just return DLT_FUNCTION_NOT_IMPLEMENTED.

___|
TerminalPollExt (IpTerminalPollExtStruct)

Called from inside a timer message, this function reads Comm data by calling
P_GRXGet() and processing the incoming data appropriately. It writes
responses to the port by calling P_AddToTXBuf() if the data should be paced.

TerminalPollExt() will not be called if Procomm Plus goes into a different state
during which Comm /O by the terminal is not allowed, such as during a file
transfer.

TerminalPollExt() should return when the current system tick count (obtained
via GetTickCount()) exceeds the value passed in the dwmsEnd field of the
IpTerminalPollExtStruct structure.

P Note: The DLT should never display any dialog boxes during a call to
TerminalPollExt().

For more information, see the code example.

___|
Timer (NULL)

Called by Procomm Plus from within a timer message. Timer() is intended
exclusively for background processing, such as implementing software blinking
on the screen. Timer() will always be called on every timer message between
the call to Reset() and the call to Shutdown().

P Note: This function is intended for background processing only;
never do any Comm 1/O or dialog box displays within this function.

DLT Specification - Procomm Plus Version 4.8 Page 5 of 21

Symantec Confidential

Reset (NULL)

Called by Procomm Plus when dialing to reset the emulation to a known clear
state. Reset() is also called after Startup() so that normal soft reset initialization
processing can occur. For further information, see the code example.

ShutDown (NULL)

Called by Procomm Plus when the user has deselected the .DLT’s emulation or
when Procomm Plus is terminating. ShutDown() deallocates all buffers and
resets the window handles. For more information, see the code example.

KeyChar (IpCHAR)

Arguments point to the wParam of a WM_CHAR message. The DLT may
process the WM_CHAR any way it sees fit. Typically it would be handled by
putting it in a string and calling back P_AddToTXBuf(). For more information,
see the code example.

SpecialKeys (IpSpecialKeysStruct)
This function is available starting with Procomm Plus version 3.xx.

Called when PW senses that the user’s pressed a key mapped to send text or
send text with echo. Arguments point to a SpecialKeysStruct which contains
the string mapped to the key, the length, and pause and record flags.

The pause flag says that the string is to be put into the outgoing buffer with
each occurrence of PW'’s pause character translated into pauses. The record
flag says that the string is to be recorded, if applicable, and added to the
outgoing buffer. For the most part, you can pass those values, as is, right into
P_AddToTxBuf.

Currently, there is no code example for this interface.

SnapShot_Capture (IpSnapShot_CaptureStruct)
This function is available starting with Procomm Plus version 3.xx.
Called by Procomm Plus to get a snapshot appended to the active capture file.

An open file handle will be passed in and the file position will be set for the DLT
to the screen contents to. For further information, refer to the code example.

DLT Specification - Procomm Plus Version 4.8 Page 6 of 21

Symantec Confidential

SnapShot_Fax (IpSnapShot_FaxStruct)
This function is available starting with Procomm Plus version 3.xx.

Called by Procomm Plus to get a snapshot to a fax image. Procomm Plus
passes in an open hDC for printing, the current default terminal font height, and
information regarding the margins and current drawing position. Refer to the
code example for further information.

SnapShot_Printer (IpSnapShot_PrinterStruct)

Called by Procomm Plus when a user clicks on the printer icon to get a
snapshot to the printer as a bitmap or character (depending on flag). Procomm
Plus passes in an open hDC for printing and the flag. For further information,
refer to the code example.

SnapShot_File (IpSnapShot_FileStruct)

Called by Procomm Plus to get a snapshot of the screen to an open file. A flag
determines the format, which will be one of: (1) text or (2) bitmap. The flag is
kept by the DLT in its advanced setup area, which is provided to it by Procomm
Plus. Refer to the code example for more information..

SnapShot_Clipboard (NULL)

Called by Procomm Plus when a user requests a snapshot of the terminal
screen to the Windows clipboard. A flag determines the format, which will be
one of: (1) text or (2) bitmap. The flag is kept by the DLT in its advanced setup
area, which is provided to it by Procomm Plus. Refer to the code example for
more information.

ReadFromDisplay (IpReadFromDisplayStruct)

Read characters from the display and return them in the buffer. If the desired
length goes off the end of the line, then continue to read from the next line. If
the end of the display is reached, then pad to the desired length with nulls.
Characters displayed as bitmapped fonts will simply be returned as the binary
character if possible, or a space if not. See the code example for further
information.

P Note: The returned buffer does NOT have to be null terminated.

StartCapture (IpStartCaptureStruct)
Struct contains an open Procomm Plus stream file handle. Incoming characters

will be copied to this stream file as they come in. The struct also contains the
field nCaptureType, which takes the values 0, 1, or 2. These are defined as:

DLT Specification - Procomm Plus Version 4.8 Page 7 of 21

Symantec Confidential

0 - “As seen on the screen”, which implies that the lines are captured as they
scroll off of the screen.

1 - Filtered, which means regular graphics characters as they come in the port plus
Carriage Return, Line Feed, Form Feed, Tab, Back Space, and Vertical Form
Feed. Other control characters and all Escape Sequences are stripped out and
not sent to the file.

2 - Raw, which captures the entire download including escape sequences in such a
way that it could be played back and the original screen would be recreated.

Refer to the code example for further information.

EndCapture (NULL)

Terminates capturing data to the capture file. Procomm Plus will flush and close
the file handle after calling this function. For more information, see the code
example.

StartReplay (NULL)

Called by Procomm Plus to initiate a file replay. Procomm Plus passes in the
name of the target file. On EOF, it sends a WM_COMMAND:ID_PLAYBACK:0
message to pw_dlt->hWndMain, which causes Procomm Plus to close the file.
For more information, see the code example.

When the screen is at a point when it could reasonably be paused, such as
when the end of the screen has been reached, the DLT should send a
WM_COMMAND:WM_USER+10:0 message to pw_dlt->hWndMain to cause
the replay to pause. No code example is given for this action.

EndReplay (NULL)

Terminates file replay. For more information, see the code example..

PauseReplay (NULL)

Pause display of the replay file. For more information, see the code example.

ContinueReplay (NULL)

Called by Procomm Plus when the user has pressed ~Q to continue a file
redisplay. For more information, see the code example.

DLT Specification - Procomm Plus Version 4.8 Page 8 of 21

Symantec Confidential

___|
TerminalWriteBuffer (IpTerminalWriteBufferStruct)

The struct contains an LPSTR, a row/column position on the screen and a flag
specifying whether to use the given row/column position or to use the current
position. The string will be inserted using the current state of the emulation. The
current position will be left at the end of the string that was written.

There is no explicit mechanism defined for synchronizing the action of a
TerminalWriteBuffer and the current state of the standard input stream. Thus,
the sequence that will cause the change to the row/column position and then
the actual string to be written can literally be inserted into the input stream at
any point, even in the middle of an incoming escape sequence.

___|
RequestNumOfEmuls (IpRequestNumOfEmulsStruct)

Called by Procomm Plus to determine the number of emulations supported by
the DLT; the DLT should return this number in the struct. Procomm Plus then
calls the DLT once for each Emulation, requesting its name, needs and
capabilities. For more information, see the code example.

P Note: Procomm Plus does not pass Ippw_dlt to this function.

___|
RequestEmulationName (IpRequestEmulationNameStruct)

Called by Procomm Plus to retrieve the name of an Emulation supported by the
.DLT. The struct will contain the number of the emulation for which the name is
being queried, a pointer to a buffer to receive the name and a maximum length
of the name. The DLL will copy the name into the buffer. This name will be the

default name for this emulation; it is possible that it will be changed by the user.
For more information, see the code example.

P Note: Procomm Plus does not pass Ippw_dlt to this function.

___|
RequestEmulationNeeds (IpRequestEmulationNeedsStruct)

Called by Procomm Plus to determine the needs of an emulation supported by
the .DLT. The specified struct will contain the number of the emulation for which
the needs are being queried, and a place to put the needs.

The needs are a bit flag array defining special items of interest to Procomm Plus
and the DLT. Currently, there is a flag to enable the Timer call, which runs even
when the emulation is shutdown, and a flag indicating that the DLL needs to
store some special information, which will be done via a dialog, called the
Advanced Setup Dialog (see below). For more information, see the code
example.

P Note: Procomm Plus does not pass Ippw_dlt to this function.

DLT Specification - Procomm Plus Version 4.8 Page 9 of 21

Symantec Confidential

RequestEmulationCaps (IpRequestEmulationCapsStruct)

This call provides a way for Procomm Plus to determine the emulation’s
capabilities. For example, currently implemented is a request to get a set of
flags that determine which menu items in the Procomm Plus menu should be
grayed. This is needed because some items such as the scrollback buffer must
be grayed for DLT emulations without a scrollback buffer. For more information,
see the code example.

P Note: Procomm Plus does not pass Ippw_dlt to this function.

DoAdvancedSetupDialog (IpDoAdvancedSetupDialogStruct)

Called by Procomm Plus when the user selects “Advanced Setup” for an
emulation if the DLT has indicated via RequestEmulationNeeds() that it
requires additional information from the user. The DLT should display a dialog
box and retrieve the required information. Procomm Plus will provide a place to
keep the information and a parent window handle for the dialog; the information
will always be available through the PW_DLT structure. This is the preferred
interface for handling special DLT specific data, such as the “unhide” and
“no_attributes” data required for the BTX emulation. It also is the preferred place
to keep the bitmap vs. text flags for SnapShot_File() and
SnapShot_Clipboard() . For more information, see the code example.

P Note: Procomm Plus does not pass Ippw_dlt to this function.

ComputeScrollRange (LPCOMPUTESCROLLRANGESTRUCT)

Called by Procomm Plus when the terminal window size is changed. It queries
whether a scrollbar is needed and if so, what its range would be. Please see the
code example in SIMPLDLT.C function ComputeScrollRange() for more
details.

SetupFinalSize (NULL)

Called by Procomm Plus when the terminal window size has been changed. It
allows the DLT to set its internal state for the new window size. This allows the
DLT to avoid handling the WM_SIZE message, which can be difficult when
handling scrollbars. For more information, see the code example.

SetupCaret NULL)
Called when Procomm Plus’s main window receives the focus. This allows the

terminal to set the caret in its window. For more information, see the code
example.

DLT Specification - Procomm Plus Version 4.8 Page 10 of 21

Symantec Confidential

RemoveCaret (NULL)

Called when Procomm Plus’s main window loses the focus. This allows the
terminal to remove the caret. For more information, see the code example.

QueryEscape (IpEscapeStruct)

Provides an interface for special cases. EscapeStruct contains the fields:
* nAction, which specifies which action is being queried.

The available values for nAction are:

1- Requests that nReturnedValue be filled with the number of Escape
options which the DLT supports for the given nEmulation. For example,
if PerformEscape() for nEmulation handles the “hidden” and “color”
attributes, nReturnedValue would be set to 2.

N - Requests that nReturnedValue be set to 1 if the DLT function
PerformEscape() has meaning for the nAction specified by N; O
otherwise. For example, if the emulation is VTX, and VTX supports
nAction 1 (“hidden” attribute), then nReturnedValue would be setto 1
before returning.

* nEmulation, which contains the internal DLT number of the emulation being
gueried.

* nReturnedValue, which contains the value returned by QueryEscape().

typedef struct tagEscapeStruct

{
int wSize; /I Size of this struct
int nEmulation; /I Which DLT emulation is being accessed
int nAction; /I Which action to take
int nReturnedValue; /I Return value
}

typedef EscapeStruct *IpEscapeStruct ;

QueryRowColInfo (IpQueryRowColinfoStruct)

P This function is available starting with PROCOMM PLIS version 3.xx.

PerformEscape (IpEscapeStruct)

Provides an interface for special cases. EscapeStruct is the same struct as is
used in QueryEscape(). It contains the fields:

DLT Specification - Procomm Plus Version 4.8 Page 11 of 21

Symantec Confidential

* nAction, which specifies the action to take. The currently defined values for
nAction are:

0 - Reserved.

1- Toggles the VTX “hidden” attribute between “hidden” and “accept”. The
default after Reset() is “accept”.

2- Toggles the VTX “color” attribute between “ignore” and “accept”. The
default after Reset() is “accept”.

* nEmulation, which contains the internal DLL number of the emulation being
requested.

* nReturnedValue, which holds the return value.

Generally, if the requested action is successful, PerformEscape() should
return 1 in nReturnedValue; 0 otherwise. If nEmulation is not the number
of the currently-running emulation, PerformEscape() has no meaning and it
should return 0 in nReturnedValue.

___|
QueryString (IpQueryStringStruct)

Provides another interface for special cases. QueryStringStruct contains an
nltem which defines what string is desired by Procomm Plus, and a pointer to a
buffer into which to place the string. The strings are typically ones that Procomm
Plus needs to perform some action on behalf of the DLT. For example, when
opening a screen snapshot file, Procomm Plus needs to know what filetype to
use, which is only known by the DLT. Procomm Plus uses this function to
discover the filetype required.

The currently defined values for “nltem” are:
0- Reserved.

1- Return the file extension which should be used for a SnapShot_File.
Typically, this would be TXT for a text format snapshot, or BMP for a
bitmap format snapshot. The text should be the file extension without a
period, and it should be in uppercase.

___|
TerminalChanged (NULL)

Called by Procomm Plus whenever something in the TERMINALSET structure, or some
data in certain other structures, has changed. This call gives the DLT the opportunity to
detect the change and respond to it. For example, if the user changes the number of
rows in Terminal Setup, TerminalChanged() will be called, providing an opportunity for
the DLT to change the number of rows it is displaying.

DLT Specification - Procomm Plus Version 4.8 Page 12 of 21

Symantec Confidential

___|
MenuNotification (IpMenuNotificationStruct)

Called when a WM_COMMAND message is received by Procomm Plus. The
DLT can process the message and return 1, or not process the message and
return O.

Many of the messages received will be defined by the ID_* #defines in menudIx.h.
Others will not. It is very important that the DLT not attempt to handle any received
messages that are not defined by ID_* #defines.

Messages

There are two windows of interest to emulations:

The terminal window, which is guaranteed always to be an integral size of the font
in height and width and only has to be responsible for painting its own character
cells as needed.

The main window, which generally has the focus unless some other window is
popped up over it

The main window gets keystroke messages, and the mappings of function keys can
be handled by setting specific keyboard maps that go along with the emulation. The
regular character keys (those that produce WM_CHAR messages) are sent to the
DLT via the KeyChar() interface call.

Record Mode

In order for the Record Mode of Procomm Plus to work well, it relies upon an emulation DLT to
call it whenever a significant cursor movement event occurs. Typically, these are when a tab,
form feed, vertical tab, CR, LF or absolute cursor positioning occurs.

___|
void PASCAL P_RecordModeChange (void)

P_RecordModeChange() should be called when a CR or LF or TAB or absolute cursor
address is seen by the main polling loop and *(Ippw_dlt->IphRecordFile)!=-1. Calling
P_RecordModeChange() signals that the host is potentially about to prompt the user
for some input. If in fact the user types something after a P_RecordModeChange(), a
waitfor/transmit pair will be generated in the script that is being recorded.

Overspray

There is a small area of color surrounding the terminal window before the background of the
display window is displayed. This area is call the “overspray” area. This is provided to make the
terminal window display appear less crowded. Without it, the characters of the terminal window
jam up against the display window background, causing an unpleasant visual effect.

DLT Specification - Procomm Plus Version 4.8 Page 13 of 21

Symantec Confidential

The color of the overspray region can be set from the DLT by calling P_SetOverSprayColor()
and passing in a COLORREF. Procomm Plus uses solid colors for both text and background,
and it is suggested that the DLT do the same for consistency. In order to do so, the
COLORREF passed to P_SetOverSprayColor() should be the return value from the Windows
API call GetNearestColor(). This will ensure that the requested color can be displayed without
dithering. See the Reset() function in the sample code file simpldlt.c for further details.

___|
void PASCAL P_SetOverSprayColor (COLORREF)

The “overspray area” is a small colored border area just inside the terminal
window, surrounding the window where terminal data is displayed. The
overspray area makes the terminal window display appear less crowded.
Without it, the characters of the terminal window jam up against the display
window background, causing an unpleasant visual effect. A DLx can set the
color of the overspray region by calling P_SetOverSprayColor() and passing in
a COLORREF value. Procomm Plus uses solid colors for its text and
background; we suggest that a DLx do the same.

Argument:

COLORREF. The COLORREF passed to P_SetOverSprayColor() should be
the return value from the Windows API call GetNearestColor(). This will ensure
that the requested color can be displayed without dithering. Please see the
Reset() function in the simpldlt.c sample code file for further details.

Mouse Interface

The mouse interface of a DLT should follow that of Procomm Plus. This consists of handling
left-button double-clicks, click-and-drag actions with the left button and click actions with the
right mouse button.

Left-button Double Clicks

Left-button double-clicks signify an instantaneous selection and sending process. Whether a
single character or a word is to be selected is discovered by calling
P_GetLButtonDClickAction(). The selected data are then sent back to Procomm Plus to be
shipped out the COM port or placed in the File Clipboard by calling P_SetMouseString().

P Note: P_GetLButtonDClickAction() and P_SetMouseString() are explained later
in this document.

Left-button Click and Drag Actions

Click-and-drag actions with the left mouse button select text on the terminal screen. The
emulation should stop calling P_GRXGet() during a click and drag action; continued calls to
P_GRXGet() would imply that the selected text could change even as the user selects it.

At the end of the click-and-drag action, signified by a left button up message, the emulation
must determine what to do with the selected data. The action can be predefined in the

DLT Specification - Procomm Plus Version 4.8 Page 14 of 21

Symantec Confidential

Advanced Setup for the DLT emulation, but it is preferable to present to the user a pop-up
menu of available options. This is done with the Windows API TrackPopupMenu().

Typical operations available to the user at the end of a click and drag action would be copying
data to the COM port, copying data to the Windows Clipboard, or printing the data.

If the data is copied to the COM port or to the Windows Clipboard, the line-ends must be
handled. This is done by appending the string returned from P_GetSelectionEOLString() to
each line of data. The resultant string is then either shipped to the COM port using
P_AddToTXBuf(), or placed into the Windows Clipboard either directly or by using
P_SetMouseString().

If the data is to be printed the current printer setup is available through the
P_ReadNamedStruct() interface.

P Note: P_GetSelectionEOLString()is explained later in this document.

Right-button Clicks

Right mouse clicks can pop up a menu, using the Windows API TrackPopupMenu(), and
display the menu items that the user has specified in the Setup, Options, RightMouse dialog.
These settings are available through P_ReadNamedStruct() calls.

A right mouse double-click can also send a string of cursor sequences out the port,
representing the actions that a user would take in positioning the emulation’s cursor at the site
of the double-click using the cursor keys. This feature is convenient if the user is working in an
on-line editor, as double-clicking can position the cursor in the character mode interface more
rapidly than would be possible with simple keystrokes. The assembled cursor sequence should
be sent out the port using P_AddToTXBuf().

___|
LPSTR PASCAL P_GetSelectionEOLString (void)

The returned value is a null-terminated string containing the characters specified
in the End of line character(s) field in Setup, Options, Left Mouse Button
Options. By default, this field’s contents are equivalent to an Enter keypress.
However, an editable field is provided for the user’s convenience.

The string should be copied locally and used immediately by the DLT, as it is

subject to immediate replacement. Do not write to the buffer, as this will
compromise the integrity of Procomm Plus’s internal data structures.

___|
int PASCAL P_GetLButtonDClickAction (void)

The results are:
1 Send a character.

2 Send a word.

DLT Specification - Procomm Plus Version 4.8 Page 15 of 21

Symantec Confidential

3 Send a character followed by CR.
4 Send a word followed by CR.

If the cursor is on whitespace, then the left mouse button double click does
nothing.

P Note: Whitespace is defined as a blank, a graphic character, or a
screen boundary. A word is defined as a contiguous sequence of non-
whitespace characters surrounded by whitespace.

Note that passing a character or word into P_SetMouseString() with type 1 will
cause the final CR to be appended if needed. In other words, use
P_GetLButtonDClickAction() only to determine whether a character or a word
should be sent. Procomm Plus adds the terminating CR if it is appropriate.

int PASCAL P_SetMouseString (int type, LPSTR Ipstr, int len)
Called with data from a mouse action.
Arguments:
int type. The type of mouse action which prompted the data. Values are:

0 The data is the result of a left-double-click. The data is assembled and
passed to P_SetMouseString(). Procomm Plus adds a terminating CR if
one is appropriate.

1 The data is the result of a selection. Currently only copying to the
Windows Clipboard is supported. The DLT should assemble the data
into a buffer, separating lines with the string returned from
P_GetSelectionEOLString(). It should then call P_SetMouseString().

2 The data is the result of a right double-click. Currently this sends the
data out the COM port. The DLT can do the same by calling
P_AddToTXBuf().

Returns:

int nRetVal. True if the function succeeded, False otherwise. If the function
failed there is no appropriate remedy, so just ignore it.

The Keyboard

Procomm Plus divides the keyboard into four regions. Each of the regions is independently
set, but all are controllable. The regions are:

DLT Specification - Procomm Plus Version 4.8 Page 16 of 21

Symantec Confidential

Metakeys, which are all ALT + number keys at the top of the keyboard
combinations. For example, ALT+1, ALT+SHIFT+1, ALT+CTRL+1, and
ALT+SHIFT+CTRL+1 are all metakeys.

Metakeys are defined in a metakey file (extension .key), which can be created
using the Metakey Editor in Procomm Plus.

Accelerators, which are all non-regular combinations of alphabetic keys. For
example, ALT+a, ALT+SHIFT+a, ALT+CTRL+a, ALT+SHIFT+CTRL+a, CTRL+a,
SHIFT+CTRL+a, and all ALT combinations of all keys on the keyboard are
accelerators.

Accelerators are created by pwmkacc.c. The programmer should edit pwmkacc.c
to create the needed definitions, then compile and execute it to create a file
XXxxxx.acc. The .acc file is included with the DLT and loaded at DLT-emulation
start-up time by specifying its name in the DLT_StartupStruct member
szKeyboardAcceleratorFileName. This member is returned by the DLT code in
response to a DLT_Startup call. The DLT_StartupStruct is passed as a parameter
to this call, and is documented in xdlt.h.

Function Keys, which are all combinations (except ALT) of Function Keys, White
Keypad keys, and Gray (extended) keys;

Function Keys are defined by a .kbd file, which can be created with the Procomm
Plus Keyboard Editor and shipped with the DLT.

Kbd files can also be created by modifying makek101.c and makek84.c, which are
then compiled and run to create xxxxxx.101 and xxxxxx.84 files. The .101 and .84
files are then included as resources in the compiled .dlt.

Regardless of the method used to create it, the keyboard resource is loaded at
DLT-emulation start-up time.

WM_CHAR keys, which are the normal alphabetic keys and their SHIFTed keys.

The WM_CHAR keys are passed from Procomm Plus to the DLT through the
KeyChar() interface, defined above.

The keyboard mappings are defined in the C code files makek101.c and
makek84.c, which write out a binary definition of the keyboards. You will need
to study the structure of the makek*.c files and modify their contents to suit your
needs.

The binary files produced by compiling and running the makek*.c files are
included into the DLL'’s resource with statements like the following:

1 KBD101INEW firstkbd.101

DLT Specification - Procomm Plus Version 4.8 Page 17 of 21

Symantec Confidential

2 KBD101INEW secndkbd.101
1 KBD84NEW firstkbd.84
2 KBD84NEW secndkbd.84

These statements allow the default 101-key and 84-key keyboard maps for
each defined emulation to be retrieved from the DLT. If one is modified by the
user, it will be written out and used transparently. If these resources are not
included in the DLT, the results are undefined.

When metakeys, function keys, and accelerators are mapped as send text or send text with
echo, their key values are not passed into the DLT. Instead, the data that these keys
represent is pumped into the outgoing data stream. Text sent with echo, echoes back to the
DLT through the incoming data buffer, which is retrieved using P_GRXGet.

If, by any chance, you need the DLT to trap data that’s sent out when the user presses a
mapped key, implement the SpecialKeys() interface, defined above. When SpecialKeys() is
implemented, the data from the mapped key is passed into the DLT in a string. The DLT can
then pump the string into the outgoing buffer using P_AddToTxBuf(); or, through the DLT’s
internal keyboard processor, by calling its own KeyChar() function.

IMPORTANT NOTE: If Procomm Plus is set to half duplex (local echo), characters from
mapped keys won'’t only be pumped into the DLT using SpecialKeys()! In addition to the DLT
getting data in half duplex mode, PW also pumps the data into the local echo queue. This
means that the echoed data will show up in the incoming buffer and get retrieved when you
make a call to P_GRXGet(). The second parameter of P_GRXGet(), IpSrc, contains the
source of each character that's returned in the first parameter, IpChar. Simply check each
character to see if it's coming in from the local echo queue and handle it appropriately.

GRX functions

Recognizing terminal escape sequences in the incoming data stream is a crucial task for a
terminal emulation. When a terminal escape sequence is found, the emulation must extract it
from the incoming data stream, and call the appropriate terminal control routine. Typically, an
input stream parser will be looking for several different string patterns simultaneously. The
“GRX” functions are designed to access the Procomm Plus input stream parsing engine, and
to take into consideration the various Procomm Plus requirements for scrollback buffering,
capture file or print logging, character translation, and Record Mode activities.

The “GRX” functions are described in Procomm Plus® Interface Specification Overview
and

Shared Callback Functions, but there are a couple issues particular to DLTs worth
mentioning.

The P_GRXGet() API, in general, can be called with any value count, however during file
playback and RecordMode, it should be called with a count of 1. This is because of internal
buffering logic which must assume that once the terminal has read a character, that character
has been processed. This logic allows P_GRXGet() to handle the P_RecordModeChar() call,

DLT Specification - Procomm Plus Version 4.8 Page 18 of 21

Symantec Confidential

and to properly shut down playback files. The DLT can always know if RecordMode is active
because *(Ippw_dlt->IphRecordFile) !=-1; for more information, see the discussion of
P_RecordModeChange(). The DLT can always know if a file replay is in effect because the
StartReplay() and EndReplay() functions are called upon starting and ending the replay file,
respectively. The easiest way to handle the RecordMode and file replay situations is to always
call P_GRXGet() with a count of 1. This is generally acceptable from a performance standpoint
because P_GRXGet() is relatively fast.

The P_GatherAndMatchinputStream() API only buffers 1K of data, so if you expect a data
stream of 10K per second, you should ensure that it is called at least 10 times per second. The
Procomm Plus timer is set to 55ms, so the DLT Timer() entry should be called 18 times per
second. If there are many activities taking place within the program or on the machine as a
whole, however, the Timer() entry to the DLT might only be called a few times per second. In
such a situation, call P_GatherAndMatchInputStream(), process all of its characters and
repeat. The loop should make sure that it eventually yields to avoid locking Windows, but it
should repeat enough times to ensure that the input stream is being properly serviced. One
way to do this is to run the loop until either there are no more input characters or until a certain
amount of time has passed (perhaps 3 clock ticks). Clock ticks (in terms of milliseconds) are
easily and quickly obtained by calling GetTickCount().

Structures

The interface structures are defined in the accompanying code, particularly in the files
cbackdlx.h and xdlt.h. These structure definitions are subject to change by DATASTORM and
by implementors as needed. With the release of PROCOMM PLUS 2.0, however, any changes
made must be done solely by addition to the end of the existing structures.

Attached Code Files

All of the conceptual details have been covered in this document, but many technical details
are further explained in the listings of the code files that are attached. For example, the header
files xdlt.h and cbackdlIx.h are included in both Procomm Plus and the DLT and define the
structures and entry points which are shared between them. The file simpldlt.c contains a
simple but functional emulation that can be used as the basis for the DLT portion of the
Procomm Plus-DLT interface.

DLT Specification - Procomm Plus Version 4.8 Page 19 of 21

Symantec Confidential

Index of Functions

COMPULESCIOITRANGE ... 10
CONLINUEREPIAY .. 8
3] I I 101 =T o = Lo TS 4
Do) AN AV 2= T Tod=To Ko7 U] o]] =1 Lo o 10
Yo LT o A = S 8
Yo LT o] = S 8
)4 O 1 > S 6
MENUNOTITICATION ...ttt nnnne 12
P_GetLBUITONDCHCKACTION ... e e e e e e e e e e e 15
P GetSeleCtiONEOL SN ... uutiiiiiiiiiiiiiiiiiiibiie e nnnnnnne 15
P_ReCOrdMOAECNANGE .. .uuiiiiiiiiiiiiiiiie e 13
P S EEMOUSESIIIING ..ttt 16
P SEtOVEISPIAYCOION ..ttt 14
o TU oY= =T o] S 8
P I OIMES CAPE ...ttt nne 11
L@ TU LT Y] o1 o 1 =PRI 10
QUEBTY SEIING e 12
=Tz 1o L o] 0] =3 o] =Y 7
LR CST L0 LY A1 O= 1 =] 10, 11
ReQUESTEMUIALIONCAPS ..o eeeeetiii ettt e e e e et et et e e e e e e e e e e eeta e e e e e e eeeeennnnaeeeeas 9
ReqUESTEMUIAIONNGIMEttt nnnnnnes 9
ReqUESTEMUIAtIONNEEUS ..o e e e e e e e et e e 9
REQUESTNUMOTEMUISeiiiiiiiiiiiiiii e nnnnnne 9
TS] PP 6

DLT Specification - Procomm Plus Version 4.8 Page 20 of 21

Symantec Confidential

ST (U oL = = PP 10
SEUPFINAISIZE ... 10
SNUEDOWN .. 6
SNAPShOt_ClIPDOAId ... 7
SNAPSNOT_Fle. .. 7
Y e = 0 151 Vo) A 11 €= P 6,7
RS =T (0= o) (U1 = PP 7
SEANTREPIAY ..o 8
R 1= o 1 U1 1P 4
LIS 0110 = | PP PP 5
BIC= 00 = 14 1 =g Yo = o 12
TerMINAIPOIEXT.....coiiiiiiiiiiieii e 5
TerminalWIItEBUTTEIoooiiiiiieeeeee e 8
LI = PP PP 5

DLT Specification - Procomm Plus Version 4.8 Page 21 of 21

