
BCS36 and up Standard 03.02 December 1993

TAM-1001-008

DMS-100 Family

DEBUG
Technical Assistance Manual

DEBUG Technical Assistance Manual BCS36 and up

DMS-100 Family

DEBUG
Technical Assistance Manual

 1988, 1989, 1991, 1993 Northern Telecom
All rights reserved.

Printed in the United States of America

NORTHERN TELECOM CONFIDENTIAL: The information contained in this document is the property of Northern
Telecom. Except as specifically authorized in writing by Northern Telecom, the holder of this document shall keep the
information contained herein confidential and shall protect same in whole or in part from disclosure and dissemination to third
parties and use same for evaluation, operation, and maintenance purposes only.

Information is subject to change without notice. Northern Telecom reserves the right to make changes in design or components
as progress in engineering and manufacturing may warrant.

DMS, DMS SuperNode, MAP, and NT are trademarks of Northern Telecom.

Publication number: TAM-1001-008
Product release: BCS36 and up
Document release: Standard 03.02
Date: December 1993

TAM-1001-008 Standard 03.02 December 1993

ii

Publication history
December 1993

BCS36 Standard 03.02 release of this document changed various commands,
parameters, and variables

October 1993
BCS36 Preliminary 03.01 release of this document to verification office

September 1991
BCS32 Standard 02.03 changed command format and made changes to
various commands, parameters, and variables

March 1991
BCS32 Standard 02.02 restructured document

DEBUG Technical Assistance Manual BCS36 and up

iii

Contents
About this document ix
Applicability of this document ix
Software Identification x

How to identify the software in your office x
Reason for Reissue x
References x

Where to find information x
Prerequisite References x
Informative References x

NT and BNR trademarks and the products they represent xi
Effect on Switch xi
What precautionary messages indicate xi
How commands, parameters, and responses are represented xii
Syntax Notes xiv

DEBUG utility 1-1
DEBUG access level 1-1
When to use DEBUG 1-1

Displaying program and data store 1-1
Setting tracepoints 1-1
Example use of DEBUG 1-2

Restrictions and limitations 1-2
Informative references 1-3

Determining terminal and node numbers 2-1
Node and terminal numbers 2-1
Terminal 0 2-1
Calculations 2-1

DEBUG commands and subcommands 3-1
Accessing DEBUG 3-1
CI level commands 3-2
DEBUG execs ($READ command) 3-2
Adding comments 3-3
DEBUG command description 3-4

ACTIVATE 3-4
Responses 3-4
Usage notes 3-6
ALLOC 3-8
Responses 3-8

iv Contents

TAM-1001-008 Standard 03.02 December 1993

BIND 3-11
Responses 3-11
CLEAR 3-15
Responses 3-15
Usage notes 3-16
CPID 3-17
Responses 3-17
Usage notes 3-18
DEACTIVATE 3-19
Responses 3-19
DEFINE 3-22
Responses 3-22
Usage notes 3-28
DELBIND 3-29
Responses 3-29
Usage notes 3-30
DISPLAY (data store) 3-31
Responses 3-33
Usage notes 3-34
DISPLAY PS (program store) 3-35
Responses 3-35
EXTEND 3-39
Responses 3-39
FDEFINE 3-42
Responses 3-42
Usage notes 3-47
GO 3-48
Responses 3-48
HELP 3-49
Responses 3-50
LIMIT 3-52
Responses 3-52
LISTBIND 3-54
Responses 3-54
PRINT 3-55
Responses 3-55
QUIT 3-58
Responses 3-58
RESET 3-59
Responses 3-59
Usage notes 3-60
SHELP 3-61
Responses 3-62
STATUS 3-64
Responses 3-64

Tracepoint subcommands 3-67
ACTIVATE 3-67
Responses 3-67
Usage notes 3-68
BIND 3-69
Responses 3-69

 Contents v

DEBUG Technical Assistance Manual BCS36 and up

Usage notes 3-70
DEACTIVATE 3-71
Responses 3-71
DISPLAY CCBPTR, ECCBPTR, CDBPTR, and RUNPPTR 3-73
Responses 3-73
DISPLAY (data store) 3-74
Responses 3-76
Usage notes 3-77
EXITIF 3-78
Responses 3-79
Usage notes 3-80
SAVECCB 3-81
Responses 3-81
Usage notes 3-81
SAVECDB 3-85
Responses 3-85
Usage notes 3-85
SAVEEXT 3-87
Responses 3-87
Usage notes 3-88
TIMESTAMP 3-89
Responses 3-89
TRACEBACK 3-90
Responses 3-90
Usage notes 3-91

Displaying data store 4-1
Format of DEBUG output from DISPLAY command 4-1
Specifying an offset in a module 4-4
Displaying contents of an absolute address 4-6
Displaying a base register 4-6
Displaying the expression stack 4-7
Displaying local variables and parameters 4-8
Output of multiple items 4-10
Using the dereference operator @ 4-11
Displaying fields in a structure 4-12
Bit field selection 4-14
Indexing a table 4-16

Word size table indexing 4-16
Bit table indexing 4-17

Indexing a descriptor 4-19
Indexing a word descriptor 4-19
Indexing a bit descriptor 4-22

Examples of displaying data 4-23
Displaying update parameters 4-23
Displaying queue problems 4-24
Displaying a field in the CCB 4-25

Differences between DEBUG on the NT40 and SuperNode 5-1
Program store 5-1
Data store 5-3

vi Contents

TAM-1001-008 Standard 03.02 December 1993

Expression stack 5-3
Local variables 5-3
Registers 5-4
Tables 5-5
Descriptors 5-6
Pointers and addresses 5-9
Tracepoint procedure code offset 5-10
EXITIFs 5-11

List of terms 6-1

List of figures
Figure 2-1 CONVERT command example 2-2
Figure 2-2 QDN command example 2-3
Figure 2-3 QLEN command example 2-4
Figure 2-4 QUERYPM command example 2-4
Figure 2-5 NODENO subcommand example 2-5
Figure 2-6 DCM carrier and timeslot to terminal number cross-reference

2-6
Figure 3-1 Issuing CI commands from within DEBUG 3-2
Figure 3-2 DEBUG exec 3-3
Figure 3-3 Adding comments 3-3
Figure 4-1 Using different output formats 4-3
Figure 4-2 Displaying data using offsets 4-5
Figure 4-3 Displaying contents of an absolute address 4-6
Figure 4-4 Displaying data using a base register 4-7
Figure 4-5 Displaying the expression stack 4-8
Figure 4-6 Displaying the expression stack 4-8
Figure 4-7 Displaying local variables and parameters 4-10
Figure 4-8 Displaying multiple items 4-11
Figure 4-9 Displaying the contents of a location 4-12
Figure 4-10 TRUNK_MEMBERS_PROT display 4-14
Figure 4-11 Displaying fields in a structure 4-14
Figure 4-12 Bits 9-12 of Second Word of Protected Store 4-15
Figure 4-13 Displaying data using bit selection 4-16
Figure 4-14 Word size table indexing 4-17
Figure 4-15 Bit Table Indexing 4-18
Figure 4-16 Displaying the third item of table 4-20
Figure 4-17 Displaying the third item of bit table 4-22
Figure 4-18 Recursive dereferencing 4-25
Figure 4-19 Displaying a field of the CCB 4-26
Figure 5-1 Displaying program store on NT40 versus SuperNode 5-2
Figure 5-2 Displaying data store on NT40 versus SuperNode 5-3
Figure 5-3 Displaying data store (bit fields) on SuperNode 5-3
Figure 5-4 Locals in the SuperNode stack 5-4
Figure 5-5 Displaying tables on the NT40 and SuperNode 5-6
Figure 5-6 Descriptor layout on the NT40 5-6
Figure 5-7 Descriptor layout on SuperNode 5-7
Figure 5-8 Displaying descriptors on NT40 and SuperNode 5-8
Figure 5-9 Descriptors on NT40 versus SuperNode 5-9
Figure 5-10 Pointers on NT40 versus SuperNode 5-10

 Contents vii

DEBUG Technical Assistance Manual BCS36 and up

Figure 5-11 EXITIFs on NT40 versus SuperNode 5-11

List of tables
Table 5-1 Important register equivalencies 5-5

DEBUG Technical Assistance Manual BCS36 and up

ix

About this document
This Technical Assistance Manual (TAM) describes the DEBUG software
tool and provides instructions for the proper use of the tool.

This TAM is intended for use by skilled maintenance personnel that have a
thorough knowledge of the DMS-100 software and experience in
maintaining the DMS-100.

The DEBUG utility is a Central Control (CC) debugging tool used to display
the contents of specified program and data store locations. By setting
tracepoints, you can display data or make procedure tracebacks at the
interrupt level when the tracepoint is encountered by a running process.
Data is saved in a buffer for later display.

Data store is displayed in hexadecimal, decimal, or symbolic format (for any
type known to the Data Dictionary). Symbolic formats include DESC,
CHAR, BOOL, and many others.

Program store is displayed in assembler code format.

Applicability of this document
Northern Telecom (NT) software releases are referred to as batch change
supplements (BCS) and are identified by a number, for example, BCS29.

This document applies to DMS-100 Family offices that have BCS36.
Unless the document is revised, it also applies to offices that have software
releases greater than BCS36.

More than one version of this document may exist. To determine which
version applies to the BCS in your office, check the release information in
Northern Telecom publications master index, 297-1001-001.

This manual is for the DEBUG version that runs on the NT40. The version
that runs on the DMS SuperNode is slightly different. Refer to Chapter 5 on
page 5-1 for an explanation of some of the differences in the versions.

The information contained in this TAM is applicable to offices having Batch
Change Supplement release 36 (BCS36) software. It is also applicable to
offices having a BCS release greater than 36 unless reissued.

x About this document

TAM-1001-008 Standard 03.02 December 1993

Software Identification
How to identify the software in your office

Software applicable to a specific DMS-100 Family office is identified by a
BCS release number and by Northern Telecom (NT) Product Engineering
Codes (PEC). The significance of the BCS number and the PEC is
described in 297-1001-450 (section 450/32) and in the Office Feature
Record D-190.

For BCS22 software loads and greater, a display of the BCS number and
PEC for the NT feature packages available in a specific office can be
obtained by entering the following command string at the Maintenance and
Administration Position (MAP):

 PATCHER;INFORM LIST;LEAVE

Reason for Reissue
This TAM is reissued to make minor modifications to several DEBUG
command descriptions.

Changes or additions to this document are indicated by change bars (|) along
the left margin.

References
Where to find information

References listed as prerequisites are essential for an understanding of this
TAM. Those listed as informative contain detailed information concerning
other items mentioned in this TAM, but are not essential. References are
inserted at the appropriate places in the text.

Note: The documents listed may exist in more than one version. See
297-1001-001 to determine the release code of the version compatible with a
specific release of software.

Prerequisite References

Document Title

297-1001-100 System Description

Informative References

Document Title

TAM-1001-000 Technical Assistance Manual Index of Documents

297-1001-001 Master Index of Practices

 About this document xi

DEBUG Technical Assistance Manual BCS36 and up

Document Title

297-1001-106 Maintenance System DMS-100/200

297-1001-107 Maintenance and Administration Tools Description

297-1001-110 Maintenance and Administration Position

297-1001-129 Input/Output System Reference Manual

NT and BNR trademarks and the products they represent
The following chart lists all NT and BNR trademarks that occur in this
document, and associates them with the products they represent.

Trademark Product

 DMS Digital multiplex system
telephone switching equipment

 DMS SuperNode telecommunications switching equipment

 MAP Maintenance and administration position
telephone communication equipment

Effect on Switch
DEBUG has minimal impact on switch operation. The impact is dependent
upon the number of tracepoints being hit, where the tracepoints are set, and
the amount of data being stored.

What precautionary messages indicate
In this document, caution, danger and warning messages indicate potential
risks, as identified in the following chart.

Message Significance

 CAUTION Possibility of service interruption or degradation

 DANGER Possibility of personal injury

 WARNING Possibility of equipment damage

Examples of the precautionary messages follow.

xii About this document

TAM-1001-008 Standard 03.02 December 1993

CAUTION
Calls are dropped when line group controller is busied.
Manually removing the line group controller from service
removes all its subtending peripheral modules from service. All
calls in progress are dropped.

DANGER
Risk of electrocution
The inverter contains high voltage lines. Do not open the front
panel of the inverter unless fuses F1, F2, and F3 have been
removed first. Until these fuses are removed, the high voltage
lines inside the inverter are active, and you risk being
electrocuted.

WARNING
Backplane connector pins may become damaged.
Use light thumb pressure to align the card with the connectors.
Next use the levers to seat the card into the connectors. Failure
to align the card first may result in bending of backplane
connector pins.

How commands, parameters, and responses are represented
In this TAM, a uniform system of notation is used to illustrate system
commands and responses. It shows the order in which command elements
appear, the punctuation, and the options. Where the conventions are not
used, an explanation is given in the text.

In this document, commands, parameters, and responses are represented
according to the following conventions.

Input prompt (>)
An input prompt (>) indicates that the information that follows is a
command.

Type the command that follows the input prompt and press ENTER.

COMMAND

Capital letters or special characters
Capital letters show constants, commands, or keywords that the system
accepts when entered as written.

 About this document xiii

DEBUG Technical Assistance Manual BCS36 and up

Enter the command or fixed parameter exactly as it appears on the page.

Lowercase letters
Lowercase letters show a user- or system-supplied parameter. Definitions
are given for each parameter.

For commands and parameters, enter the letters or numbers that the variable
represents. In most instances, the name that is used for the variable indicates
clearly what you must enter. Where it does not, further explanations are
provided.

In responses (which are presented in capital letters), lowercase letters
represent a range of values.

Brackets [] or []
Brackets enclose optional parameters. A vertical list enclosed in brackets
means that one or more of the parameters may be selected.

Underlined parameter
Is a default. If no choice is entered, the system acts as though the underlined
parameter had been entered.

Underscore connecting words
Means the words are to be treated as one item, for example, pm_type or
#_one_two.

•••
Indicates repeated steps or items.

In addition, the following conventions are used.

n (lowercase n)
Is a number from 0 to 9.

a (lowercase a)
Is a letter from A to Z.

h (lowercase h)
Is a hexadecimal integer from 0 to F.

The following example illustrates the command syntax that is used in this
document.

xiv About this document

TAM-1001-008 Standard 03.02 December 1993

Examples of command syntax used in this document

Step Action

1
input>

parameters>

Example
input>

Example
output>

Post the card in the inactive unit.

>POST unit_no card_no state

where
unit_no is the number of the inactive unit (0 or 1)
card_no is the number of the card you replaced (22-27)
state is the state of the unit in which you wish to re-

place the card (Insv, SysB, ManB or Offl)

For example:
>POST 7 1 INSV

CARD 7 IS POSTED IN UNIT 1 OF MSB16

Syntax Notes
In the examples in this manual, the commands are preceded with the prompt
>. The next lines after the command, until a blank line, give the output from
the switch. For example:

>DI LOGS: PR.3A This line contains the command.
016F48: 5645 This line contains the output.

DEBUG Technical Assistance Manual BCS36 and up

1-1

DEBUG utility
DEBUG access level

Access the DEBUG utility by entering the DEBUG command from any
level of the MAP. Refer to Chapter 3 on page 3-1 for correct command
syntax.

When to use DEBUG
DEBUG is a multiuser tool. The DEBUG software includes commands for
displaying data and program store using PROTEL-like expressions. You
may execute the commands at the terminal or define them for execution at
any point in a running PROTEL program.

Displaying program and data store
DEBUG allows you to display program store as well as private, shared, and
protected data store. Data can be referenced as the PROTEL type; for
example, a DESC of TABLE of DESC. In addition to displaying this type of
structure, DEBUG easily displays simple variables in hexadecimal, decimal,
character or Data Dictionary format. DEBUG also displays program store in
assembler code format.

Setting tracepoints
Maintenance personnel can set tracepoints in order to analyze run-time data.
Because DEBUG is used in live switches, the program is not halted when a
tracepoint is encountered. An interrupt is generated to snapshot and save the
data specified in the tracepoint subcommands. When a tracepoint is hit, data
(for example, call condense blocks or call header blocks) can be collected
for display at a later time.

If the tracepoint is hit often, then the data is overwritten. If the commands
SAVECDB and SAVECCB (see SAVECDB on page 3-85 and SAVECCB on
page 3-81) or the output formats CDB or CCB (see Format of DEBUG
output from DISPLAY command on page 4-1) are used in the tracepoint
subcommand list, then only four tracepoint hits are stored before the oldest
one is overwritten, unless the buffers have been enlarged by the ALLOCate
command (see ALLOC on page 3-8). If you are unsure as to whether or not
the data will be overwritten, then print out the data regularly or use the
LIMIT command (see LIMIT on page 3-52).

1-2 DEBUG utility

TAM-1001-008 Standard 03.02 December 1993

It is possible to overcome the problem of overwriting data by using the
EXITIF tracepoint subcommand (see EXITIF on page 3-78) or by having
the tracepoint (de)activate itself or another tracepoint.

DEBUG is a useful tool both for lab testing and for tracing bugs in live
offices.

Example use of DEBUG
Assume you modified or created a module called ‘OWNIOUI’. During
testing of this module, you have discovered (by setting a DEBUG tracepoint,
for example) that the ELSE clause of an IF statement was entered when the
THEN clause should have been entered. The variable being checked is the
47th entry in a bit table pointed to by a SHARED pointer variable.

By using DEBUG, only the following command is required to display the
47th entry of the bit table pointed to by the shared variable:

>DI OWNIOUI:SH.5@ BT 4 (&47) HEX
40A40E: 000D

Restrictions and limitations
A maximum of 50 tracepoints can be defined during a single DEBUG
session. Each tracepoint definition can include up to 30 tracepoint
subcommands. A tracepoint definition may be displayed and extended to
include up to 30 subcommands.

 DEBUG utility 1-3

DEBUG Technical Assistance Manual BCS36 and up

Informative references
The listed publications provide a foundation for understanding a broad scope
of information surrounding the DEBUG utility. These publications are not
referenced within the text of this document.

Note: The documents listed may exist in more than one version. See
297-1001-001 to determine the release code of the version compatible with a
specific release of software.

Document Title

TAM-1001-000 Technical Assistance Manual Index of Documents

297-1001-001 Master Index of Practices

297-1001-106 Maintenance System DMS-100/200

297-1001-107 Maintenance and Administration Tools Description

297-1001-110 Maintenance and Administration Position

297-1001-129 Input/Output System Reference Manual

DEBUG Technical Assistance Manual BCS36 and up

2-1

Determining terminal and node
numbers

This part describes how to calculate node and terminal numbers. The CPID
command in DEBUG requires node and terminal numbers as parameters.
For more information on this command, see CPID on page 3-17.

Node and terminal numbers
Message tracing requires identifying the terminals to be monitored. A
terminal is an external connection to the DMS-100, such as a line, a trunk,
or a data link. A terminal identifier is composed of a node number and a
terminal number.

A node is any unit that can accept or originate messages. A node number is
a unique number assigned by the system to a node. A terminal number is a
number assigned to a specific terminal attached to a node. Terminal 0 is
reserved for maintenance messaging, and the remaining terminals (1 to N)
are associated with individual lines, trunks, and so on.

Terminal 0
Each node has a terminal 0 that sends and receives maintenance messages
specific to the peripheral processor.

When a terminal requires a maintenance activity be performed, such as
Return to Service, a message indicating that maintenance is needed is sent
from terminal 0 to the CC.

When a peripheral module controller receives maintenance action
commands from the MAP, such as load, busy, or test, those messages are
sent to terminal 0. Therefore, if a problem is related to activities within a
peripheral, monitoring the messages going to and coming from terminal 0
aids in troubleshooting.

Calculations
The CPID command in DEBUG displays a node and terminal number
formatted as a Line Equipment Number (LEN) or trunk ID. Before issuing
the CPID command, you must first determine the external node and terminal
numbers.

2-2 Determining terminal and node numbers

TAM-1001-008 Standard 03.02 December 1993

To determine the PM node number and terminal number composing a
terminal identifier, use one of the following methods.

• Method 1. Use the CONVERT command in PMIST to determine the
terminal identifier, as follows:
CONVERT <format_id> <value>

For Example:

CONVERT DN dn
CONVERT LEN len
CONVERT TRK clli external_trk_name

Refer to Figure 2-1 on page 2-2 for an example of the CONVERT
command.

Figure 2-1xxx
CONVERT command example

PMIST MULTI USER:
>convert dn 6211234

NN= 0023 TN= 013C

PMIST MULTI USER:
>

In the previous example, the external node number in hexadecimal is 23
and the external terminal number in hexadecimal is 13C.

• Method 2. Use the CI command QDN with the directory number of the
line to be traced as follows:
QDN <directory number>

Refer to Figure 2-2 on page 2-3 for an example of using the QDN
command.

 Determining terminal and node numbers 2-3

DEBUG Technical Assistance Manual BCS36 and up

Figure 2-2xxx
QDN command example

 CI:
 >qdn 6213010
--
 DN: 6213010
 TYPE: SINGLE PARTY LINE
 SNPA: 613
 LINE EQUIPMENT NUMBER: REM1 00 0 00 23
 LINE CLASS CODE: 1FR
 SIGNALLING TYPE: DIGITONE
 LINE TREATMENT GROUP: 0
 LINE ATTRIBUTE INDEX: 0
 CARDCODE: 2X17AB GND: N PADGRPL STDLN BNV: NL MNO: N
 PM NODE NUMBER : 21
 PM TERMINAL NUMBER : 27
 OPTIONS:
 DGT
--

In the preceding example, the node number is 21 and the terminal
number is 27.

• Method 3. Use the CI command QLEN with the LEN as follows:
QLEN <len>

Refer to Figure 2-3 on page 2-4 for an example of the QLEN command.

2-4 Determining terminal and node numbers

TAM-1001-008 Standard 03.02 December 1993

Figure 2-3xxx
QLEN command example

 CI:
 >qlen 1 0 11 1
--
 LEN: HOST 01 0 11 01
 TYPE: SINGLE PARTY LINE
 SNPA: 613
 DIRECTORY NUMBER: 6215111
 LINE CLASS CODE: 1FR
 SIGNALLING TYPE: DIGITONE
 LINE ATTRIBUTE INDEX: 32
 CARDCODE 6X17 GND N PADGRP STDLN BNV NL MNO N
 OPTIONS:
 DGT
 PM NODE NUMBER : 63
 PM TERMINAL NUMBER : 354
--

In the preceding example, the node number is 63 and the terminal
number is 354.

• Method 4. Use QUERYPM at the PM access level to find the node
number as follows:
POST <node type> <device number>
QUERYPM

Refer to Figure 2-4 on page 2-4 for an example of the QUERYPM
command.

Figure 2-4xxx
QUERYPM command example

 PM:
 >post TM8 1
 POST:
 >querypm
 PM TYPE TM8 PM NO.: 1 NODE NO.: 16
 PM_STATUS: InSv NOTE_STATUS: OK,FALSE,CHKSUM: 018 1
 PP LOAD: VALID PP EXECS: VALID FNAME: BTMIA01
 PMS EQUIPPED: 30 PM INT. :1
 Site Flr RPos Bay_Id Shf Description Slot EqPEC
 HOST 00 B01 TME 0001 04 LTC : 000 6X02AA

In the preceding example, the node number is 16.

• Method 5. Use the NODENO command in PMIST to find the node
number as follows:

 Determining terminal and node numbers 2-5

DEBUG Technical Assistance Manual BCS36 and up

NODENO <node type> <device class> <device number>

Refer to Figure 2-5 on page 2-5 for an example of the NODENO
command.

Figure 2-5xxx
NODENO subcommand example

PMIST MULTI USER:
>nodeno tm_node tm8 1
NODENO=16
PMIST MULTI USER:
>

Calculate the terminal number for DTCs and LTCs as follows:

terminal number = (carrier * 32) + <channel> + 1

Note: You can find the carrier number, channel number, circuit number, and
similar information by posting the peripheral.

For TM, MTM, TM2, TM4, and similar PM, calculate the terminal
number as follows:

1 + circuit number

For LM and LCM, calculate the terminal number as follows:

(drawer * 32) + <line card> + 1

• Method 6. Terminal Identifiers for DCM

To determine the terminal number of a DCM, post the DCM at the TTP
level of the MAP. Locate the carrier number and timeslot associated
with the DCM.

Refer to Figure 2-6 on page 2-6. In the CCT column, locate the carrier
number and timeslot associated with the posted DCM. The terminal
number associated with the carrier and timeslot number is given in the
TN column.

2-6 Determining terminal and node numbers

TAM-1001-008 Standard 03.02 December 1993

Figure 2-6xxx
DCM carrier and timeslot to terminal number cross-reference

CCT TN CCT TN CCT TN CCT TN CCT TN
_________ _________ _________ _________ _________

0-01 01 1-01 31 2-01 61 3-01 91 4-01 02
0-02 32 1-02 62 2-02 92 3-02 03 4-02 33
0-03 63 1-03 93 2-03 04 3-03 34 4-03 64
0-04 94 1-04 05 2-04 35 3-04 65 4-04 95
0-05 06 1-05 36 2-05 66 3-05 96 4-05 07
0-06 37 1-06 67 2-06 97 3-06 08 4-06 38
0-07 68 1-07 98 2-07 09 3-07 39 4-07 69
0-08 99 1-08 10 2-08 40 3-08 70 4-08 100
0-09 11 1-09 41 2-09 71 3-09 101 4-09 12
0-10 42 1-10 72 2-10 102 3-10 13 4-10 43
0-11 73 1-11 103 2-11 14 3-11 44 4-11 74
0-12 104 1-12 15 2-12 45 3-12 75 4-12 105
0-13 16 1-13 46 2-13 76 3-13 106 4-13 17
0-14 47 1-14 77 2-14 107 3-14 18 4-14 48
0-15 78 1-15 108 2-15 19 3-15 49 4-15 79
0-16 109 1-16 20 2-16 50 3-16 80 4-16 110
0-17 21 1-17 51 2-17 81 3-17 111 4-17 24
0-18 52 1-18 82 2-18 112 3-18 23 4-18 53
0-19 83 1-19 113 2-19 24 3-19 54 4-19 84
0-20 114 1-20 25 2-20 55 3-20 85 4-20 115
0-21 26 1-21 56 2-21 86 3-21 116 4-21 27
0-22 57 1-22 87 2-22 117 3-22 28 4-22 58
0-23 88 1-23 118 2-23 29 3-23 59 4-23 89
0-24 119 1-24 30 2-24 60 3-24 90 4-24 120

For example, if DCM 1 is posted at the TTP level of the MAP, and the
following is displayed:

DCM 1 0 09

the carrier number is 0 and the timeslot is 09. According to the chart in
Figure 2-6 on page 2-6, 0-09 is associated with terminal number 11.

To determine the node number of the DCM, post the DCM at the PM
level of the MAP and issue the command QUERYPM. The node
number is contained in the output of the QUERYPM command.

DEBUG Technical Assistance Manual BCS36 and up

3-1

DEBUG commands and subcommands
This part describes the DEBUG commands, tracepoint subcommands, and
system responses.

All addresses, offsets, field widths, and base register numbers ae interpreted
as hexadecimal numbers. However, they may optionally be preceded by an
octothorpe (#). Constants and repetition values are interpreted as decimal
numbers unless they are preceded by an octothorpe (#). Strides are also
interpreted as decimal numbers unless preceded by an octothorpe (#).

Accessing DEBUG
The DEBUG utility commands ae available to the user following successful
access to the utility.

Type DEBUG from any level of the MAP to enter the DEBUG utility.
Following are system responses that may occur as the user attempts to
access the DEBUG utility:

debug mode

Explanation: The user issued the DEBUG command.

System Action: The DEBUG mode is entered.

User Action: No user action is required.

type DEBUG to enter debug mode

Explanation: The user issued the DEBUG command, specifying a
parameter, or the word DEBUG was preceded by another command (for
example, HELP DEBUG).

System Action: The command is not executed.

User Action: Reenter the DEBUG command without specifying any
parameters.

3-2 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

CI level commands
CI level commands are accepted by the DEBUG subsystem if the commands
are preceded by a dollar sign ($).

The example in Figure 3-1 on page 3-2 shows the $ character used to
execute the DSKUT and LISTVOL commands from within DEBUG.

Figure 3-1xxx
Issuing CI commands from within DEBUG

>DEBUG
>$DSKUT
DSKUT:

>$LISTVOL D010TEMP
RECORDFILE
BUZZINIT
RECORDFILE

DEBUG execs ($READ command)
DEBUG command sequences are often lengthy and may be the same for
many work sessions. DEBUG commands can be stored in a file in order to
retrieve and execute them again.

If the file specified in the READ command contains DEBUG commands, the
file is a DEBUG exec. Any commands valid at the CI level of DEBUG may
be included in the file. This exec file has the effect of operating exactly as
though the user was typing the commands at the terminal: prompts are
output, reply messages are echoed, and error messages and actions take
place. However, the input is read from the file. See Figure 3-2 on page
3-3 for an example of a DEBUG exec.

Note: There is a slight difference in using the execs when defining tracepoints.
Since empty lines are difficult to work with in files, identifying the end of a
subcommand list is done by inserting a line with only blanks (spaces).

 DEBUG commands and subcommands 3-3

DEBUG Technical Assistance Manual BCS36 and up

Figure 3-2xxx
DEBUG exec

 File EX1$EXEC contains

DEF T1 LNUTILUI CLOSE_LINE_CHANNEL #12
TIMESTAMP
DI OAUUI1:PR.42 (&0) (&0) TRMNL_ID
DI OAUUI1:PR.42 (&0) (&0) .1,8,8 CARD_CODE
 <line with only a space>
ACT T1

>$READ EX1$EXEC
enter subcommands
end of subcommand list of 3 items
tracepoint T1 defined
tracepoint T1 activated
>

Adding comments
Comments can be entered on separate lines or added to any command line.
Precede a comment line with a % character. Alternatively, follow a
command by a % character and some explanation. This latter step is often
done in the definition of tracepoint commands, to indicate what data is being
displayed.

The example in Figure 4.3 shows the % character used to add a comment to
a tracepoint subcommand.

Figure 3-3xxx
Adding comments

>DEFINE E1 LLERPRCI LL_ERROR 0
enter subcommands
>DI R 4.3C.0.1F.0,1,8 %display NCOS
>
end of subcommand list of 1 items
tracepoint E1 defined

3-4 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

DEBUG command description
ACTIVATE

The ACTivate command activates a previously defined tracepoint so it can
begin collecting data. All tracepoints are deactivated following a restart,
except when the RESTART parameter is used in the ACTivate command; in
that case, the tracepoint is scheduled to be activated after the next restart.
ACTivate is also a tracepoint subcommand. For more information, refer to
ACTIVATE on page 3-67.

ACTivate tracepoint_name RESTART
ALL

Where:

tracepoint_name is the name of an existing tracepoint.

ALL specifies that all defined tracepoints are to be
activated.

RESTART specifies that the tracepoint is not to be activated until
after a restart.

Responses

* token error * invalid character at column ____
Explanation: The user issued the ACTivate command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid tracepoint name or
ALL.

expecting tracepoint name
Explanation: The user issued the ACTivate command with no
parameters.

System Action: The command is not executed.

User Action: Reenter the command, specifying either a tracepoint name
or ALL.

Someone is changing the buffer size.
Wait and try the command again.

Explanation: Another user is currently changing the size of the tracepoint
data buffers, so tracepoints cannot be activated at this time.

 DEBUG commands and subcommands 3-5

DEBUG Technical Assistance Manual BCS36 and up

System Action: The command is not executed.

User Action: Reenter the command.

tp ____ not activated, clear and redefine it
Explanation: The tracepoint cannot be activated because there is no store
for bind table values. If the tracepoint handler attempts to use the store, a
restart may result.

System Action: The command is not executed.

User Action: Clear the tracepoint, redefine it, and then activate it.

TP ____ not activated. Clear and redefine it.
Explanation: The tracepoint cannot be activated because there is no store
for bind table values. If the tracepoint handler attempts to use the store, it
may result in a restart.

System Action: The command is not executed.

User Action: Clear the tracepoint, redefine it, and then activate it.

tracepoint ____ activated
Explanation: The user issued the ACTivate command with the tracepoint
parameter.

System Action: The command is executed.

User Action: No user action is required.

Tracepoint ____ not activated: ____
Explanation: The user issued the ACTivate ALL command, and there
was an invalid opcode at that location.

System Action: The command is not executed.

User Action: Clear the tracepoint and redefine it.

tracepoint ____ already active.

Explanation: The user attempted to activate a tracepoint that was already
active.

System Action: The command is not executed.

User Action: No user action is required.

Tracepoint ____ was already active.

Explanation: The user entered the ACTivate ALL command, and one or
more tracepoints were already active.

3-6 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

System Action: The tracepoints that were not already activated are
activated.

User Action: No user action is required.

tracepoint ____ will be activated during next restart
Explanation: The user entered the ACTivate command with the
RESTART parameter.

System Action: The command is executed.

User Action: No user action is required.

unknown symbol ____ at column ____
Explanation: The user issued the ACTivate command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name or
ALL.

unknown tracepoint
Explanation: The user attempted to activate a tracepoint that had not
been defined.

System Action: The command is not executed.

User Action: Define the tracepoint and then activate it, or activate a
tracepoint that is already defined.

unknown tracepoint name
Explanation: The user attempted to activate a tracepoint that had not
been defined.

System Action: The command is not executed.

User Action: Define the tracepoint and then activate it, or activate a
tracepoint that is already defined.

Usage notes
1 All tracepoints are deactivated following a restart, except when the

RESTART parameter is used; in that case, the tracepoint is not activated
until a restart. In order to have a tracepoint activated both before and
after a restart, the user must issue the ACTIVATE command twice, first
with the RESTART parameter and next without the RESTART
parameter.

 DEBUG commands and subcommands 3-7

DEBUG Technical Assistance Manual BCS36 and up

2 ACTivate is also a tracepoint subcommand, which means that a
tracepoint can activate another tracepoint when the first tracepoint gets
hit. This is useful if a tracepoint gets hit very often, and the user is
interested only when another piece of code is executed first.

Examples:

1 The following command string activates tracepoint TP1:
>ACT TP1
tracepoint TP1 activated

2 The following command string activates all tracepoints defined in the
system and makes them active both before and after a restart:
>ACT ALL RESTART
tracepoint TP1 will be activated during next restart
tracepoint TP2 will be activated during next restart
tracepoint TP3 will be activated during next restart
>ACT ALL
tracepoint TP1 activated
tracepoint TP2 activated
tracepoint TP3 activated

3-8 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

ALLOC
The ALLOC command changes the size of the tracepoint subcommand
buffer and the tracepoint data buffer accordingly. The tracepoint data buffer
is always 10 words/subcommand, or 10 times the tracepoint subcommand
buffer. The buffer size can only be changed when no tracepoints are active
and no tracepoint data has been saved. To ensure these conditions, type the
following command strings:

>DEACT ALL
>RESET ALL

If no parameter is specified with the ALLOC command, the current
tracepoint buffer sizes are displayed. The default for the tracepoint
subcommand buffer size is 220 subcommands, so the data buffer size default
is 2200 words.

ALLOC number_of_subcommands

Where:

number_of_subcommands
specifies the size you desire to change the
subcommand buffer to (1-3276).

Responses

* token error * invalid character at column ____
Explanation: The user issued the ALLOC command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying the number of
subcommands or no parameters.

A positive number must be specified.
Explanation: The requested size of the subcommand buffer was less than
one.

System Action: The command is not executed.

User Action: Reenter the command, specifying positive number for the
number of subcommands.

Data buffer size: ____ words.
Subcommand buffer size: ____ subcommands.

 DEBUG commands and subcommands 3-9

DEBUG Technical Assistance Manual BCS36 and up

Explanation: The user issued the ALLOC command with no parameters.

System Action: The command is executed.

User Action: No user action is required.

Failed to allocate new buffers.
The old buffers remain unchanged.

Explanation: DEBUG requested data store from the system, and the
request was refused because data store on the switch was exhausted.

System Action: The command is not executed.

User Action: Wait and try the command again. (Hopefully, someone will
release some data store, and the command will be executed.)

New data buffer size: ____ words.
New subcommand buffer size: ____ subcommands.

Explanation: The ALLOC command was issued with the
number_of_subcommands parameter.

System Action: No system action is required.

User Action: No user action is required.

The buffers cannot be changed with tracepoints active.

Explanation: The user attempted to change the buffer sizes while
tracepoints were still active.

System Action: The command is not executed.

User Action: Type the following command string:

>DEACT ALL
>RESET ALL

Then reissue the ALLOC command

The requested size is too large. Max is ____.

Explanation: The user attempted to change the subcommand buffer size
to more than the maximum allowable number of subcommands.

System Action: The command is not executed.

User Action: Reenter the command specifying a valid subcommand
buffer size.

3-10 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

There is data present in the buffer. You cannot change
the buffer size until the buffer is empty.
To ensure this issue the command RESET ALL.

Explanation: The user attempted to change the buffer sizes while the
buffers still contained saved data.

System Action: The command is not executed.

User Action: Issue the RESET ALL command, and then reissue the
ALLOC command.

unknown symbol ____ at column ____

Explanation: The user issued the ALLOC command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying the number of
subcommands or no parameters.

Examples:

1 The following command string displays the current tracepoint buffer
sizes:
>ALLOC
Data buffer size: 2200 words
Subcommand buffer size: 220 subcommands

2 The following command string sets the tracepoint buffer size to 500
subcommands:
>ALLOC 500
Data buffer size: 5000 words
Subcommand buffer size: 500 subcommands

 DEBUG commands and subcommands 3-11

DEBUG Technical Assistance Manual BCS36 and up

BIND
The BIND command assigns a symbolic name (bind name) to the specified
storage reference. Illegal bind names include names which can be
interpreted as hex numbers or storage reference elements (for example, R,
SH, or L). BIND is also a tracepoint subcommand. For more information,
refer to BIND on page 3-69.

BIND bind_name TO storage_reference

Where:

bind_name is a string of up to eight characters, excluding
certain values reserved for DEBUG, such as hex
numbers and storage reference elements (1, 2, 3, ...
D, E, E, F, L, PP, PR, R, S, SB, SH).

storage_reference is the storage reference which the bind name will
now represent. Acceptable types include the
following:

• absolute address

• base register

• S (expression stack top)

• SB or L (base of current stack frame)

• bind name

• module name followed by store type.

Store type can be any of the following:

- PR.offset (for protected global variables)

- PP .offset (for private global variables)

- SH.offset (for shared global variables).

Responses

* token error * invalid character at column ____
Explanation: The user issued the BIND command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying a bind name and storage
reference.

attempt to add existing name

3-12 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

Explanation: The user issued the BIND command with a bind name that
already exists.

System Action: The command is not executed.

User Action: Reenter the command, specifying an unused bind name.

directory error

Explanation: An internal directory error has occurred. If this error
occurs, there are problems with the switch.

System Action: The command is not executed.

User Action: Try the command again.

directory illegal
Explanation: An internal directory error has occurred. If this error
occurs, there are problems with the switch.

System Action: The command is not executed.

User Action: Try the command again.

directory is full
Explanation: The user issued the BIND command, and the maximum
number of BINDs has been specified.

System Action: The command is not executed.

User Action: Delete some BINDs using the DELBIND command. Then
reissue the BIND command.

directory string error

Explanation: An internal directory error has occurred.

System Action: The command is not executed.

User Action: Try the command again.

expecting bind_id

Explanation: The user issued the BIND command without specifying any
parameters, or the user entered a hexadecimal number for a bind name.

System Action: The command is not executed.

User Action: Reenter the command, specifying a bind name and storage
reference.

expecting MOD: ,PP,PR,SH or L,S,B,R,S,& number, or addr

 DEBUG commands and subcommands 3-13

DEBUG Technical Assistance Manual BCS36 and up

Explanation: The user issued the BIND command without specifying the
storage reference.

System Action: The command is not executed.

User Action: Reenter the command, specifying a bind name and storage
reference.

expecting storage reference
Explanation: The user issued the BIND command without specifying the
storage reference.

System Action: The command is not executed.

User Action: Reenter the command, specifying a bind name and storage
reference.

L,S,R,SB,SH,PR,PP are illegal bind names

Explanation: The user attempted to BIND using an illegal bind name or
entered BIND and a storage reference without entering a bind name.

System Action: The command is not executed.

User Action: Reenter the command, specifying a legal bind name.

unknown symbol ____ at column ____

Explanation: The user issued the BIND command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying a bind name and storage
reference.

Example:

The following command string binds storage reference OAUUI1:PR.60 to
bindname JTG:

>BIND JTG TO OAUUI1:PR.60

This results in an alternative reference for OAUUI1:PR.60. Compare the
following two equivalent DIsplay commands:

3-14 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

>DI OAUUI1:PR.60 BT 4 (&0)
08354D: 0008

>DI JTG BT 4 (&0)
08354D: 0008

 DEBUG commands and subcommands 3-15

DEBUG Technical Assistance Manual BCS36 and up

CLEAR
The CLEAR command deletes one or all tracepoints
that have been defined in the system, regardless of

whether they are activated or deactivated. All trace-
point definitions and data collected for the tracepoints

are lost.

CLEAR tracepoint_name
ALL

Where:

tracepoint_name is the name of an existing tracepoint.

ALL specifies that all tracepoints that are defined are to be
cleared.

Responses

*token error * invalid character at column ____
Explanation: The user issued the CLEAR command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name or
ALL.

expecting tracepoint name or ALL
Explanation: The user issued the CLEAR command without specifying
any parameters.

System Action: The command is not executed.

User Action: Reenter the command, specifying a defined tracepoint name
or ALL.

tracepoint ____ cleared
Explanation: The user entered the CLEAR command.

System Action: The command is executed.

User Action: No user action is required.

unknown symbol ____ at column ____

3-16 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

Explanation: The user issued the CLEAR command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name or
ALL.

unknown tracepoint name
Explanation: The user attempted to clear a tracepoint that has not been
defined.

System Action: The command is not executed.

User Action: Reenter the command, specifying either a defined
tracepoint name or ALL.

Warning - tracepoint is referenced by another tracepoint

Explanation: The tracepoint the user wishes to clear has been referenced
within another tracepoint subcommand.

System Action: The command is executed.

User Action: Remove all references to that tracepoint within other
tracepoints.

Usage notes
DEBUG is a multi-user program, so be sure you do not clear another user’s
tracepoints by specifying the ALL parameter.

Examples:

1 The following command string clears tracepoint TP1:
>CLEAR TP1
tracepoint TP1 cleared

2 The following command string clears all tracepoints from the system:
>CLEAR ALL
tracepoint TP1 cleared
tracepoint TP2 cleared
tracepoint TP3 cleared

 DEBUG commands and subcommands 3-17

DEBUG Technical Assistance Manual BCS36 and up

CPID
The CPID command displays the CP_ID bound as a node and terminal
number formatted in the manner appropriate to the CP selector. See Chapter
2 on page 2-1 for an explanation of how to calculate node numbers and
terminal numbers.

CPID node_number terminal_number

Where:

node_number is the node number (range is 0 to 4095).

terminal_number is the terminal number (range is 0 to 4095).

Responses

* token error * invalid character at column ____
Explanation: The user issued the CPID command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying a node and terminal
number.

expecting node number

Explanation: The user issued the CPID command without specifying any
parameters or specified an alphabetic or alphanumeric value for the node
number.

System Action: The command is not executed.

User Action: Reenter the command, specifying a node number and
terminal number.

expecting terminal number

Explanation: The user issued the CPID command, specifying only one
parameter or specified an alphabetic or alphanumeric value for the terminal
number.

System Action: The command is not executed.

User Action: Reenter the command, specifying a node number and
terminal number.

The node number is out of range.

3-18 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

Explanation: The node number the user entered is not a valid node
number.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid node number.

The terminal number out of range.

Explanation: The terminal number the user entered is not a valid terminal
number.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid terminal number.

unknown symbol ____ at column ____
Explanation: The user issued the CPID command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying a node and terminal
number.

Usage notes
The CPID command is accepted only in offices where call processing
software is loaded.

Example:

The following command string displays node #10, terminal #102 as a LEN:

>CPID #19 #12
LEN HOST 1 0 12 0

 DEBUG commands and subcommands 3-19

DEBUG Technical Assistance Manual BCS36 and up

DEACTIVATE
The DEACTivate command deactivates tracepoints that have been
previously defined and activated. A tracepoint is deactivated after a restart
(if RESTART parameter was not specified with ACTIVATE) and once its
limit is reached. For more information on tracepoint limits, refer to LIMIT
on page 3-52. DEACTivate is also a tracepoint subcommand, so a
tracepoint can deactivate itself or another tracepoint. For more information,
refer to DEACTIVATE on page 3-71.

DEACTivate tracepoint_name RESTART
ALL

Where:

tracepoint_name is the name of an existing tracepoint.

ALL specifies that all tracepoints that are defined are to be
deactivated.

RESTART schedules a tracepoint to be deactivated after the next
restart.

Responses

* token error * invalid character at column ____

Explanation: The user issued the DEACTivate command, and the
tokenizer encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name or
ALL.

expecting tracepoint name

Explanation: The user issued the DEACTivate command with no
parameters.

System Action: The command is not executed.

User Action: Reenter the command, specifying either a tracepoint name
or ALL.

restart activation deactivated
Explanation: The user issued the DEACTivate command with RESTART
as a command parameter.

3-20 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

System Action: The command is executed.

User Action: No user action is required.

restart activation deactivated for ____
Explanation: The user issued the DEACTivate command with ALL
RESTART as command parameters.

System Action: The command is executed.

User Action: No user action is required.

tracepoint ____ deactivated
Explanation: The user issued the DEACTivate command with the
tracepoint name parameter.

System Action: The command is executed.

User Action: No user action is required.

tracepoint ____ is inactive

Explanation: The user attempted to deactivate a tracepoint that was not
currently active.

System Action: The command is not executed.

User Action: No user action is required.

Tracepoint ____ was not active

Explanation: The user specified the ALL parameter, and the tracepoint(s)
listed in the error message are not active.

System Action: The command is not executed for any inactive
tracepoints.

User Action: No user action is required.

Tracepoint ____ was not deactivated: ____

Explanation: The user issued the DEACTivate ALL command, and an
internal error occurred.

System Action: The command is not executed.

User Action: This message signifies that an internal error has occurred.
This message should never occur.

unknown symbol ____ at column ____

Explanation: The user issued the DEACTivate command and specified
extra parameters beyond the command.

 DEBUG commands and subcommands 3-21

DEBUG Technical Assistance Manual BCS36 and up

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name or
ALL.

UNKNOWN TRACEPOINT NAME
Explanation: The user attempted to deactivate a tracepoint that had not
been defined.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint that is
already active.

Examples:

1 The following command string deactivates tracepoint TP1:
>DEACT TP1
tracepoint TP1 deactivated

2 The following command string deactivates all tracepoints defined in the
system and disables the restart activation:
>DEACT ALL RESTART
restart activation deactivated for TP1
restart activation deactivated for TP2
restart activation deactivated for TP3

3-22 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

DEFINE
The DEFine command defines tracepoints in program store. After the
tracepoint is defined, DEBUG will prompt for subcommands. The
subcommand input is terminated with a blank line and carriage return.

Note: Refer to Tracepoint Procedure Code Offset on page 5-10 for differences
in tracepoint definition in the NT40 and SuperNode.

DEFine tracepoint_name address

Where:

tracepoint_name is the name of the tracepoint (up to 32 characters).

address is the program store reference. Acceptable types
include the following:

• absolute byte address (up to six hex digits)

• module_name procedure_name offset (offset
defaults to beginning of procedure).

Responses

* token error * invalid character at column ____
Explanation: The user issued the DEFine command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name and
address.

*** ERROR *** Unstackfrn failed.
Explanation: A Command Interpreter (CI) error occurred when DEBUG
was reading the DEFine command from a DEBUG exec file ($READ
command).

System Action: The command is not executed.

User Action: Reenter the command.

A tracepoint is already defined at this address
tracepoint definition failed

Explanation: A tracepoint has already been defined at the address
specified in the command.

 DEBUG commands and subcommands 3-23

DEBUG Technical Assistance Manual BCS36 and up

System Action: The command is not executed.

User Action: No user action is required.

address does not lie within a procedure
Explanation: The absolute byte address entered does not lie within a
procedure.

System Action: The command is not executed.

User Action: Reenter the command, specifying an address within a
procedure.

ALL is an invalid tracepoint name.
Explanation: The user issued the DEFine command with ALL as a
parameter.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid tracepoint name
and address.

attempt to redefine existing tracepoint
Explanation: The user issued the DEFine command specifying a
tracepoint name that had already been defined.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name that has
not yet been defined.

DIRECTORY ERROR, cannot add tracepoint
Explanation: An internal error occurred when the user issued the DEFine
command.

System Action: The command is not executed.

User Action: Reenter the command.

end of subcommand list of ____ items
Explanation: The user issued the DEFine command, and the last
subcommand for the tracepoint has been issued, denoted by entering a blank
line.

System Action: No system action occurs; subcommand input is
terminated.

User Action: No user action is required.

enter subcommands

3-24 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

Explanation: The tracepoint has been defined, and the user can now enter
subcommands.

System Action: No system action is required.

User Action: Enter any tracepoint subcommands, ending the list by
entering a null line.

enter tracepoint name or number
Explanation: The user issued the DEFine command without specifying
any parameters.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid tracepoint name
and address.

expecting program store address

Explanation: The user issued the DEFine command without specifying
an address.

System Action: The command is not executed.

User Action: Reenter the command, specifying an address (program store
reference).

expecting tracepoint name or number
Explanation: The user issued the DEFine command without specifying
any parameters.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid tracepoint name
and address.

failed to allocate directory for local binds

Explanation: DEBUG requested data store from the system, and the
request was refused because data store on the switch was exhausted.

System Action: The command is not executed.

User Action: Wait and try the command again. (Hopefully, someone will
release some data store, and the command will be executed.)

failed to allocate store for symbol table
the command will be executed.

Explanation: DEBUG requested data store from the system, and the
request was refused because data store on the switch was exhausted.

 DEBUG commands and subcommands 3-25

DEBUG Technical Assistance Manual BCS36 and up

System Action: The command is not executed.

User Action: Wait and try the command again. (Hopefully, someone will
release some data store, and the command will be executed.)

failed to allocate store for subcommands
Explanation: DEBUG requested data store from the system, and the
request was refused because data store on the switch was exhausted.

System Action: The command is not executed.

User Action: Wait and try the command again. (Hopefully, someone will
release some data store, and the command will be executed.)

illegal hex number
Explanation: The address specified is a valid hex address.

System Action: The command is not executed.

User Action: Reenter the command specifying a valid hex address.

invalid module name
Explanation: The module name specified is not an actual program store
reference.

System Action: The command is not executed.

User Action: Reenter the command specifying a valid module name.

invalid opcode at offset ____
Explanation: The user issued the DEFine command, and the specified
address is not aligned on an operation code boundary. This is probably the
result of a patch in the code.

System Action: The command is not executed.

User Action: If you are certain about the location, issue the FDEFine
command. Otherwise, reissue the DEFine command, specifying a valid
address.

invalid program store address
Explanation: The address specified in the command is not an actual
program store reference.

System Action: The command is not executed.

User Action: Reenter the command specifying a valid address.

invalid subcode entered ____

3-26 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

Explanation: DEBUG disassembled an invalid SYSOP operation code
(NT40 only).

System Action: The command is not executed.

User Action: This error should not occur. If it does occur, and you are
certain about the location, issue the FDEFine command.

invalid tracepoint subcommand
Explanation: The subcommand entered was a valid tracepoint command
but not a valid tracepoint subcommand.

System Action: The command is not executed.

User Action: Enter a subcommand included in Tracepoint Subcommands
on page 3-67.

max number of tracepoints already defined

Explanation: 50 tracepoints have already been defined.

System Action: The command is not executed.

User Action: Clear existing tracepoints before attempting to add new
ones.

tracepoint ____ defined

Explanation: The user entered a null line to signify the end of the
subcommand list.

System Action: The command is executed.

User Action: No user action is required.

tracepoint not aligned on machine instruction
last opcode is at ____, tracepoint is at ____

Explanation: The user specified an address in the middle of an
instruction.

System Action: The command is not executed.

User Action: Reenter the command, specifying an address at the
beginning of an instruction or, if you are certain about the address you
entered, enter the FDEFine command.

unable to allocate store for tracepoint subcommands

Explanation: DEBUG requested data store from the system, and the
request was refused because data store on the switch was exhausted.

System Action: The command is not executed.

 DEBUG commands and subcommands 3-27

DEBUG Technical Assistance Manual BCS36 and up

User Action: Wait and try the command again. (Hopefully, someone will
release some data store, and the command will be executed.)

unknown debug command

Explanation: The subcommand entered was not a valid tracepoint
subcommand.

System Action: The subcommand is not executed.

User Action: Enter a valid tracepoint subcommand from the list shown in
Tracepoint Subcommands on page 3-67.

unknown procedure name
Explanation: The procedure name specified in the address is not a valid
procedure name.

System Action: The subcommand is not executed.

User Action: Reenter the command, specifying a valid address.

Unknown SWBP encountered at ____
Explanation: In the process of operation code alignment, a tracepoint was
encountered earlier in the procedure.

System Action: The command is not executed.

User Action: For multiple tracepoints in one procedure, place the
tracepoints in reverse order. That is, define the one farthest from the
beginning of the procedure first, the one second farthest from the beginning
second, etc.

unknown symbol ____ at column ____

Explanation: The user issued the DEFine command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name and
address.

Warning: non-DEBUG SWBP found at ____
Explanation: A non-DEBUG software breakpoint was encountered
earlier in the procedure.

System Action: The command is not executed.

User Action: No user action is required.

3-28 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

Usage notes
A maximum of 50 tracepoints can be defined.

Examples:

1 The following command string defines a tracepoint at offset 3 in module
LSETPRCI, procedure LINE_SETUP_PROCESSOR:
>DEF TP1 LSETPRCI LINE_SETUP_PROCESSOR #3
enter subcommands

2 The following command string defines a tracepoint at address 17459:
>DEF TP1 #17459
enter subcommands

 DEBUG commands and subcommands 3-29

DEBUG Technical Assistance Manual BCS36 and up

DELBIND
The DELBIND command removes one or all BINDs defined in the system
by the BIND command. It is recommended that all BINDs be removed at
the end of a DEBUG session

DELBIND bind_name
ALL

Where:

bind_name
is the name of an existing bind (alphanumeric or
alphabetic).

ALL specifies that all BINDs are to be cancelled.

Responses

* token error * invalid character at column ____
Explanation: The user issued the DELBIND command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid bind name or
ALL.

bind cancelled: ____

Explanation: The user issued the DELBIND command with the bind
name parameter.

System Action: The command is executed.

User Action: No user action is required.

command not implemented

Explanation: An internal consistency check error occurred.

System Action: The command is not executed.

User Action: This error message should never occur.

expecting bind_id
Explanation: The user issued the DELBIND command without
specifying any parameters, or the user entered a hexadecimal number for a
bind name.

3-30 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

System Action: The command is not executed.

User Action: Reenter the command, specifying a bind name or ALL.

expecting bind name or ALL
Explanation: The user issued the DELBIND command without
specifying any parameters, or the user specified a numeric bind name.

System Action: The command is not executed.

User Action: Reenter the command, specifying a bind name or ALL.

unknown bind name
Explanation: The bind name entered is not a valid bind name defined
using the BIND command.

System Action: The command is not executed.

User Action: No user action is required.

unknown symbol ____ at column ____

Explanation: The user issued the DELBIND command and specified
extra parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying a legal bind name or
ALL.

Usage notes
At the end of a DEBUG session, a user should cancel any BINDs created
during that session. However, the user must be careful not to cancel any
BINDs created by other DEBUG users.

Example:

The following command string cancels bind JTG:

>DELBIND JTG
bind cancelled: JTG

 DEBUG commands and subcommands 3-31

DEBUG Technical Assistance Manual BCS36 and up

DISPLAY (data store)
The DIsplay command is used to display values in data and program store.
This section describes how to use the DIsplay command for displaying
values in data store.

For information on displaying program store, refer to DISPLAY PS
(Program Store) on page 3-35. Display is also tracepoint subcommand. For
more information, refer to DISPLAY (Data Store) on page 3-74.

Note: Refer to Data Store on page 5-3 for the differences in data store on the
NT40 and SuperNode.

DIsplay storage_reference store_index size format

Where:

storage_reference
is the storage reference. Acceptable types include the
following:

• absolute address (up to six hex digits), optionally
preceded by # (for example, #39AE4)

• base register other than R 0 (in the format R nn;
for example, R 4)

• S (expression stack top); n words below the top of
the stack (for example, S.-2 or S.-#2)

• SB or L (base of current stack frame); local
variable at offset nn (for example, L.nn or L.#nn
or SB.nn or SB.#nn)

• bind name (as defined using the BIND command
or subcommand)

• module name followed by store type.

Store type can be any of the following:

- PR.offset (for protected global variables)

- SH.offset (for shared global variables).

Offset can be up to four hex digits.

store_index can be any of the following:

• .nn (word offset on NT40 or byte offset on
SuperNode)

• .nn, b, w (word offset on NT40 or byte offset on
SuperNode, bit offset, bit width)

3-32 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

This is a reference to a bit offset within a word. If
no bit width is specified, the default is the rest of
the word. This accesses a bit field of width w bits,
at offset nn words, b bits from the given address.
Another representation for this reference is the
following.
.nn OFB b W w.

• .nn@ (dereferencing a pointer at the address
given)

• .nn (i) (indexing descriptors)

• .nn B (i) (indexing bit descriptors)

• .nn T x (i) (indexing a table given the stride; x
defaults to 1)

• .nn BT x (i) (indexing a bit table given the stride;
x defaults to 1)

• .nn TB x (i) (indexing a bit table given the stride;
x defaults to 1).

Where:

• nn=word offset on NT40 or byte offset on
SuperNode

• b=bit offset

• w=bit width

• x=table stride

• i=index in table.

i can be either of the following:

- &number (any numeric value)
Note: If the “&” is omitted, the number is interpreted
as an address instead of a constant.

- storage_reference (to at most one word of
store; see previous explanation).

size is the number (form N=nn) of items to be displayed.

format is one of the following output formats:

• DEC (decimal output)

• HEX (hexadecimal output - this is the default
output format)

• ADDR (six-digit hexadecimal address)

• DESC (address - size - stride)

 DEBUG commands and subcommands 3-33

DEBUG Technical Assistance Manual BCS36 and up

• CHAR (readable character string)

• CCB (Display is formatted as Call Condense
Block if the DISP_CALL_PROCS are bound in.
Otherwise, it is dumped in hex. Attempting to
format non-CCB data as a CCB may cause a trap.)

• CDB (Display is formatted as a Call Data Block if
the DISP_CALL_PROCS are bound in.
Otherwise, it is dumped in hex. Attempting to
format non-CDB data as a CDB may cause a
trap.)

• EXT (Display is formatted as an Extension Block
if the DISP_CALL_PROCS are bound in.
Otherwise, it is dumped in hex. Attempting to
format non-EXT data as an EXT may cause a
trap.)

• typename (for Data Dictionary format). This is
mainly used to display I/O type data. All type
names known by DDEDIT are allowed.

Responses
Because there are numerous system responses for the DIsplay command,
they are listed here without explanations. Most of the responses are
self-explanatory.

* token error * invalid character at column ____
cannot do word offset on bit field
desc, addr formats only apply to word items
Desc stride must be entered as D n
expecting =
expecting base register number
expecting bit offset
expecting bit width
expecting closing parenthesis
expecting decimal number
expecting hexnumber
expecting MOD:,PP,PR,SH or L,SB,R,S,& number, or addr
expecting number
expecting offset
expecting opening parenthesis
expecting PP,PR or SH
expecting storeref
failed to scan transitive uses list
illegal base register number
illegal hex number
illegal hexnumber
illegal index

3-34 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

illegal indexing
invalid base register number
invalid bit stride
invalid dec number
invalid dereference
Invalid Ecore bit descriptor syntax
invalid format or N
invalid module name
invalid perprocess reference
modifier cannot operate on one word of a register
modifier cannot operate on this register
negative address not accepted
PP only valid for perprocess module
PP reference at CI level requires module name
PR reference at CI level requires module name
protected segment does not exist
SH reference at CI level requires module name
shared segment does not exist
the first modifier must be @
too many digits
too many modifiers
typename not found
unable to allocate store
unknown bind name
unknown symbol
unknown symbol ____ at column ____

Usage notes
1 Recursive indexing or dereferencing is allowed.

2 Invalid indexing or dereferencing gives an error message.

3 Indexing or dereferencing cannot follow bit offset.

4 Further qualification of indexing or dereferencing is possible.

Example:

Refer to Chapter 4 on page 4-1 for examples of displaying data store.

 DEBUG commands and subcommands 3-35

DEBUG Technical Assistance Manual BCS36 and up

DISPLAY PS (program store)
The DIsplay PS command displays program store in assembler format unless
hexadecimal format is specified. The BREAK key can be used to stop the
display. Use the ENTER key to continue.

Note: Refer to Program Store on page 5-1 for the differences in program store
on the NT40 and SuperNode.

DIsplay PS start_address size HEX

Where:

start_address is the program store reference. Acceptable types include
the following:

• bind name

• absolute byte address: up to six hex digits

• module_name procedure_name <offset>: offset
defaults to beginning of procedure.

size is the number, in bytes (form N=nn), of items to be
displayed. If not specified, the rest of the procedure is
displayed.

HEX specifies that the output is to be displayed in
hexadecimal format. If not specified, the output is
displayed in assembler format.

Responses

* token error * invalid character at column ____
Explanation: The user issued the DI PS command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying valid parameter(s).

expecting procedure name
Explanation: The user issued the DIsplay PS command without
specifying a start address.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid start address.

3-36 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

expecting program store address
Explanation: The user issued the DIsplay PS command without
specifying any parameters.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid start address.

illegal hex number
Explanation: The user issued the DI PS command, specifying an address
greater than 6 digits on the NT40 or 8 digits on SuperNode.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid start address.

invalid module name

Explanation: The user issued the DI PS command, specifying a module
name that does not exist.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid module name.

MORE THAN 1 PROCEDURE WITH THAT NAME
CHECK SELECTED NAME
USE FULL NAME IF NECESSARY.

Explanation: The user issued the DI PS command, specifying a
procedure name that is the procedure name for more than one procedure.

System Action: The command is not executed.

User Action: Reenter the command, specifying the full procedure name.

Nil procedure descriptor

Explanation: The user issued the DI PS command specifying an entry
procedure name. After Initial Program Load (IPL), entry procedures can no
longer be displayed.

System Action: The command is not executed.

User Action: No user action is required.

offset exceeds procedure size
Explanation: The user issued the DI PS command, specifying an offset
that goes beyond the end of the procedure.

System Action: The command is not executed.

 DEBUG commands and subcommands 3-37

DEBUG Technical Assistance Manual BCS36 and up

User Action: Reenter the command, specifying a valid start address.

offsets are from entered ps address
Explanation: The user issued the DI PS command, specifying an address.
Offsets from the beginning of procedure cannot be displayed if the program
store does not belong to a procedure. Therefore, the offsets are from the
address specified.

System Action: The command is executed.

User Action: No user action is required.

unknown bind name
Explanation: The user either entered an invalid start address or none at
all.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid start address.

unknown procedure name
Explanation: The user issued the DI PS command, specifying a
procedure name that does not exist in the specified module.

System Action: The command is not executed.

User Action: Check the procedure name, and then reenter the command.

unknown symbol
Explanation: The user issued the DI PS command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying the correct parameters.

unknown symbol ____ at column ____

Explanation: The user issued the DI PS command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying the correct parameters.

Examples:

1 The following command string displays the rest of the procedure from
address 17459:

3-38 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

>DI PS #17459
017459: 0007 PUSH2 #0001 (B03)
01745D: 000B PUSH #0004 (B03)
017461: 000F PUSHS #0 (SB)
017463: 0011 CALLDC #09 (BFB)
017466: 0014 COPY
017467: 0015 POP #0004 (B03)
01746B: 0019 NE
01746C: 001A FEND

2 The following command displays 10 bytes of program store from
procedure CLOSE_LINE_CHANNEL starting at offset 12
(CLOSE_LINE_CHANNEL is in module LNUTILUI):
>DI PS LNUTILUI CLOSE_LINE_CHANNEL #12 N=10

3A16E0: 0012 POP #101B (SB)
3A16E4: 0016 JUMPS #19
3A16E6: 0018 PUSHSV #06
3A16E8: 001A PUSHV #02BD

 DEBUG commands and subcommands 3-39

DEBUG Technical Assistance Manual BCS36 and up

EXTEND
The EXTend command allows the user to add subcommands to an existing
tracepoint. For a list of acceptable tracepoint subcommands, refer to
Tracepoint Subcommands on page 3-67. Subcommand input is terminated
by a blank line followed by a carriage return.

EXTend tracepoint_name

Where:

tracepoint_name is the name of an existing tracepoint.

Responses

* token error * invalid character at column ____
Explanation: The user issued the EXTend command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name.

*** ERROR *** Unstackfrn failed.
Explanation: A Command Interpreter (CI) error occurred when DEBUG
was reading the EXTend command from a DEBUG exec file ($READ
command).

System Action: The command is not executed.

User Action: Reenter the command.

cannot extend tracepoint which must be redefined
Explanation: The user issued the EXTEND command, and a restart
occurred recently.

System Action: The command is not executed.

User Action: Clear the tracepoint and redefine it.

cannot specify ALL for EXTEND

Explanation: ALL was specified as a parameter to the EXTend
command.

System Action: The command is not executed.

3-40 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

User Action: Reenter the command specifying a tracepoint name to be
extended.

end of subcommand list of ____ items
tracepoint ____ extended

Explanation: The user issued the EXTend command, and the last
subcommand of the tracepoint has been issued, denoted by entering a blank
line.

System Action: No system action occurs; subcommand input is
terminated.

User Action: No user action is required.

enter subcommands

Explanation: The user issued the EXTend command and can now enter
subcommands.

System Action: No system action is required.

User Action: Enter any tracepoint subcommands, ending the list by
entering a null line.

expecting tracepoint name

Explanation: The user issued the EXTend command without specifying
any parameters.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid tracepoint name.

failed to allocate store for subcommands
Explanation: DEBUG requested data store from the system, and the
request was refused because data store on the switch was exhausted.

System Action: The command is not executed.

User Action: Wait and try the command again. (Hopefully, someone will
release some data store, and the command will be executed.)

invalid tracepoint subcommand
Explanation: The subcommand entered was a valid tracepoint command
but not a valid tracepoint subcommand.

System Action: The command is not executed.

User Action: Enter a subcommand included in Tracepoint Subcommands
on page 3-67.

 DEBUG commands and subcommands 3-41

DEBUG Technical Assistance Manual BCS36 and up

unable to allocate store to extend subcommand list
Explanation: DEBUG requested data store from the system, and the
request was refused because data store on the switch was exhausted.

System Action: The command is not executed.

User Action: Wait and try the command again. (Hopefully, someone will
release some data store, and the command will be executed.)

unknown debug command
Explanation: The user entered an invalid tracepoint subcommand.

System Action: The command is not executed.

User Action: Enter a valid tracepoint subcommand.

unknown symbol ____ at column ____

Explanation: The user issued the EXTend command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying tracepoint name.

unknown tracepoint name

Explanation: The user attempted to extend a tracepoint that had not been
defined.

System Action: The command is not executed.

User Action: Define the tracepoint and then extend it.

Example:

The following command string adds tracepoint subcommand DI R 1 to
tracepoint TP1:

>EXT TP1
enter subcommands
>DI R 1
>
end of subcommand list of 1 items
tracepoint TP1 extended

3-42 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

FDEFINE
The FDEFine command defines tracepoints in program store. Unlike the
DEFine command, FDEFine will place a tracepoint in the middle of an
instruction. Activation will still fail if the tracepoint is defined on an invalid
operation code. This capability is mainly for the placement of tracepoints in
patched code.

CAUTION

Careless placement of tracepoints can cause warm restarts.

Note: Refer to Tracepoint Procedure Code Offset on page 5-10 for differences
in tracepoint definition in the NT40 and SuperNode.

FDEFine tracepoint_name address

Where:

tracepoint_name is the name of the tracepoint (up to 32 characters).

address is the program store reference. Acceptable types
include the following:

• absolute byte address (up to six hex digits)

• module_name procedure_name offset (offset
defaults to beginning of procedure).

Responses

* token error * invalid character at column ____
Explanation: The user issued the FDEFine command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name and
address.

*** ERROR *** Unstackfrn failed.
Explanation: A Command Interpreter (CI) error occurred when DEBUG
was reading the FDEFine command from a DEBUG exec file ($READ
command).

 DEBUG commands and subcommands 3-43

DEBUG Technical Assistance Manual BCS36 and up

System Action: The command is not executed.

User Action: Reenter the command.

A tracepoint is already defined at this address
tracepoint definition failed

Explanation: A tracepoint has already been defined at the address
specified in the command.

System Action: The command is not executed.

User Action: No user action is required.

address does not lie within a procedure
Explanation: The absolute byte address entered does not lie within a
procedure.

System Action: The command is not executed.

User Action: Reenter the command, specifying an address within a
procedure.

ALL is an invalid tracepoint name.
Explanation: The user issued the FDEFine command with ALL as a
parameter.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid tracepoint name
and address.

attempt to redefine existing tracepoint
Explanation: The user issued the FDEFine command specifying a
tracepoint name that had already been defined.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name that has
not yet been defined.

DIRECTORY ERROR, cannot add tracepoint

Explanation: An internal error occurred when the user issued the
FDEFine command.

System Action: The command is not executed.

User Action: Reenter the command.

end of subcommand list of ____ items

3-44 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

Explanation: The user issued the FDEFine command, and the last
command and the last subcommand for the tracepoint has been issued,
denoted by entering a blank line.

System Action: No system action occurs; subcommand input is
terminated.

User Action: No user action is required.

enter subcommands
Explanation: The tracepoint has been defined, and the user can now enter
subcommands.

System Action: No system action is required.

User Action: Enter any tracepoint subcommands, ending the list by
entering a null line.

enter tracepoint name or number
Explanation: The user issued the FDEFine command without specifying
any parameters.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid tracepoint name
and address.

expecting tracepoint name or number
Explanation: The user issued the FDEFine command without specifying
any parameters.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name and
address.

expecting program store address
Explanation: The user issued the FDEFine command without specifying
an address.

System Action: The command is not executed.

User Action: Reenter the command, specifying a program store address.

failed to allocate directory for local binds

Explanation: DEBUG requested data store from the system, and the
request was refused because data store on the switch was exhausted.

System Action: The command is not executed.

 DEBUG commands and subcommands 3-45

DEBUG Technical Assistance Manual BCS36 and up

User Action: Wait and try the command again. (Hopefully, someone will
release some data store, and the command will be executed.)

failed to allocate store for symbol table

Explanation: DEBUG requested data store from the system, and the
request was refused because data store on the switch was exhausted.

System Action: The command is not executed.

User Action: Wait and try the command gain. (Hopefully, someone will
release some data store, and the command will be executed.)

failed to allocate store for subcommands
Explanation: DEBUG requested data store from the system, and the
request was refused because data store on the switch was exhausted.

System Action: The command is not executed.

User Action: Wait and try the command again. (Hopefully, someone will
release some data store, and the command will be executed.)

illegal hex number
invalid module name

Explanation: The user issued the FDEFine command, specifying an
illegal address or module name.

System Action: The command is not executed.

System Action: The subcommand is not executed.

User Action: Try the subcommand again.

unknown symbol ____ at column ____
Explanation: The user issued the TRACEBACK subcommand and
specified extra parameters beyond the command.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying correct parameters.

3-46 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

User Action: Reenter the command, specifying a tracepoint name and
address.

invalid program store address

Explanation: The address specified in the command is not an actual
program store reference.

System Action: The command is not executed.

User Action: Reenter the command specifying a valid ps_reference.

invalid tracepoint subcommand

Explanation: The subcommand entered was not a valid tracepoint
subcommand.

System Action: The command is not executed.

User Action: Enter a subcommand included in Tracepoint Subcommands
on page 3-67.

max number of tracepoints already defined
Explanation: 50 tracepoints have already been defined.

System Action: The command is not executed.

User Action: Delete any tracepoints you are not using, and then reenter
the command.

tracepoint ____ defined
Explanation: The user entered a null line to signify the end of the
subcommand list.

System Action: The command is executed.

User Action: No user action is required.

unable to allocate store for tracepoint subcommands

Explanation: DEBUG requested data store from the system, and the
request was refused because data store on the switch was exhausted.

System Action: The command is not executed.

User Action: Wait and try the command again. (Hopefully, someone will
release some data store, and the command will be executed.)

unknown symbol ____ at column ____
Explanation: The user issued the FDEFine command and specified extra
parameters beyond the command.

 DEBUG commands and subcommands 3-47

DEBUG Technical Assistance Manual BCS36 and up

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name and
address.

Usage notes
A maximum of 50 tracepoints can be defined.

Examples:

1 The following command string defines a tracepoint at offset 3 in module
LSETPRCI, procedure LINE_SETUP_PROCESSOR:
>FDEF TP1 LSETPRCI LINE_SETUP_PROCESSOR #3

2 The following command string defines a tracepoint at address 17459:
>FDEF TP1 #17459

3-48 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

GO
The GO command exits from the DEBUG utility. All tracepoint information
collected will be kept, and active tracepoints will continue collecting
information until they reach specified limits. QUIT is a synonym for GO.

GO

Responses

* token error * invalid character at column ____
Explanation: The user issued the GO command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command without specifying any parameters.

unknown symbol ____ at column ____

Explanation: The user issued the GO command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command without specifying any parameters.

 DEBUG commands and subcommands 3-49

DEBUG Technical Assistance Manual BCS36 and up

HELP
The HELP command gives syntax and usage notes for the specified
command or subcommand. If no command or subcommand is specified, a
general help panel is displayed.

HELP command_name
subcommand_name

Where:

command_name is one of the following:

• ACTIVATE

• ALLOCATE

• BIND

• CLEAR

• CPID

• DEACTIVATE

• DEFINE

• DELBIND

• DISPLAY

• DISPLAY PS

• EXTEND

• HELP

• LISTBIND

• PRINT

• QUIT

• RESET

• STATUS

subcommand_name is one of the following:

• ACTIVATE

• BIND

• DEACTIVATE

• DISPLAY

• EXITIF

• SAVECCB

• SAVECDB

• SAVEEXT

3-50 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

• TIMESTAMP

• TRACEBACK

Responses

* token error * invalid character at column ____
Explanation: The user issued the HELP command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid command or
subcommand name.

unknown debug command

Explanation: The user issued the HELP command and specified an
unknown command or subcommand name.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid command or
subcommand name.

unknown symbol ____ at column ____
Explanation: The user issued the HELP command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid command or
subcommand name.

Examples:

1 The following command displays the general help screen:

 DEBUG commands and subcommands 3-51

DEBUG Technical Assistance Manual BCS36 and up

> HELP
HELP - valid at CI level

HELP shows syntax and usage notes for a command
or subcommand. Commands may be executed at CI level;
subcommands may be included in tracepoint definitions.
This display is shown if no parameter is given.
Parameters: [<command_name>  <subcommand_name>]
<command_name> is: QUIT  HELP  DISPLAY  DISPLAY PS

 DEFINE  EXTEND  ACTIVATE  DEACTIVATE  CLEAR
 STATUS  BIND  PRINT  RESET  LISTBIND  DELBIND
 LIMIT  ALLOC  CPID

<subcommand_name> is: DISPLAY  ACTIVATE  DEACTIVATE
 TRACEBACK  BIND  EXITIF  TIMESTAMP  SAVECCB
 SAVECDB  SAVEEXT

2 The following command displays the help screen for the DIsplay
command:
>HELP DISPLAY
DIsplay storage _reference [FORMAT] [N = nn]
storage_reference is: start_address [modifiers]

start_address is: absolute address (up to 6 hex digits)
module_name:PR  PP  SH (headsegments)
L  SB (local variables)
S (expression stack top)
R nn (base register nn)

modifiers are: offset (in words, up to 4 hex digits)

 offset [,s [,w]] (bit field width w,
offset s bits from start of word)

@ (dereference a pointer at address given)
(index)  B (index) (index a desc or bit desc)

 T n (index)  BT n (index))
(index a table or bit table of stride n)

index is: &constant  storage_reference)
formats are DEC  HEX  ADDR  DESC  CHAR  typename
command valid at CI level and in tracepoint definition

3-52 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

LIMIT
The LIMIT command changes the maximum number of times a tracepoint
can be hit. After a tracepoint is hit the maximum number of times, it is
deactivated. The default limit is 25 times. The maximum number of times a
tracepoint can be hit is 32767.

CAUTION

Numerous passes with large amounts of data being
collected may result in the data first collected being
overwritten.

LIMIT tracepoint_name number_of_passes

Where:

tracepoint_name is the name of an existing tracepoint.

number_of_passes is a number between 1 and 32767.

Responses

* token error * invalid character at column ____

Explanation: The user issued the LIMIT command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying valid parameter(s).

cannot set LIMIT for all tracepoints
Explanation: The user specified ALL as a parameter to the LIMIT
command.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name and
number of passes.

expecting positive number

Explanation: A negative number was specified for the number_of_passes
parameter of the LIMIT command.

System Action: The command is not executed.

 DEBUG commands and subcommands 3-53

DEBUG Technical Assistance Manual BCS36 and up

User Action: Reenter the command, specifying a positive number for the
number of passes.

expecting tracepoint name

Explanation: The user issued the LIMIT command without specifying
any parameters.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid tracepoint name.

old pass limit: ____ new pass limit: ____

Explanation: The user issued the LIMIT command. If no
number_of_passes parameter was specified, the old pass limit and new pass
limit are the same.

System Action: The command is executed.

User Action: No user action is required.

unknown symbol ____ at column ____
Explanation: The user issued the LIMIT command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying valid parameter(s).

unknown tracepoint name
Explanation: The user attempted to change the maximum number of
passes for a tracepoint that has not been defined.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name that has
been defined.

Example:

The following command string limits the number of times tracepoint TP1 is
hit to 75 times:

>LIMIT TP1 75
old pass limit: 25 new pass limit: 75

3-54 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

LISTBIND
The LISTBIND command displays all global BINDs that are defined in the
system, as well as their data storage references. The output is in such a
format that a command file can be created.

LISTBIND

Responses

* token error * invalid character at column ____
Explanation: The user issued the LISTBIND command, and the
tokenizer encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command without specifying any parameters.

unknown symbol ____ at column ____

Explanation: The user issued the LISTBIND command and specified a
parameter.

System Action: The command is not executed.

User Action: Reenter the command without specifying any parameters.

Example:

The following command displays all global BINDS defined in the system:

>LISTBIND
BIND JTG TO OAUUI1:PR.60

 DEBUG commands and subcommands 3-55

DEBUG Technical Assistance Manual BCS36 and up

PRINT
The PRINT command displays all data collected by the specified tracepoint
or all tracepoints. If no parameter is specified, all tracepoints are displayed,
along with the number of passes each tracepoint has made.

PRINT tracepoint_name
ALL

Where:

tracepoint_name is the name of an existing tracepoint.

ALL specifies that all data collected by all tracepoints is to
be displayed.

Responses

* token error * invalid character at column ____

Explanation: The user issued the PRINT command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name, ALL,
or no parameters.

____: ____ passes made: ____ passes allowed

Explanation: The user issued the PRINT command specifying no
parameters.

System Action: The command is executed.

User Action: No user action is required.

____: no data found, ____ passes made: ____ passes allowed

Explanation: The user issued the PRINT command without specifying
any parameters. No tracepoint data has been collected for this session.

System Action: The command is executed.

User Action: No user action is required.

all data for this tracepoint has been overwritten
Explanation: The user issued the PRINT command with no parameters.
Since the data buffer is common to all users, data is eventually overwritten.

System Action: The command is executed.

3-56 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

User Action: No user action is required.

earlier data has been overwritten
Explanation: The user issued the PRINT command with no parameters.
Since the data buffer is common to all users, data is eventually overwritten.

System Action: The command is executed.

User Action: No user action is required.

The data collected for this
pass exceeds 1K limit.

Explanation: There is a limit of 1 Kbyte of data that can be collected for
each subcommand.

System Action: The command is not executed.

User Action: Break the data collection into two or more tracepoints.

there is no saved data to print
Explanation: The user issued the PRINT command with no parameters.
No tracepoint data has been collected for this session.

System Action: The command is executed.

User Action: Wait for the tracepoint to be hit and data collected.

unknown symbol ____ at column ____
Explanation: The user issued the PRINT command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name, ALL,
or no parameters.

unknown tracepoint id

Explanation: Tracepoint name specified is not a defined tracepoint.

System Action: The command is not executed.

User Action: Reenter the command, specifying a defined tracepoint.

unknown tracepoint name
Explanation: Tracepoint name specified is not a defined tracepoint.

System Action: The command is not executed.

User Action: Reenter the command, specifying a defined tracepoint.

 DEBUG commands and subcommands 3-57

DEBUG Technical Assistance Manual BCS36 and up

Examples:

1 The following command string prints all data collected by tracepoint
TP1:
>PRINT TP1
TRACEPOINT TP1 AT 3A14C3: LNUTILUI ALLOCATE OFFSET #0003
PASS 1
DI R 1

76D2B5:8051

2 The following command string prints all tracepoints and the number of
passes each tracepoint made:
>PRINT
TP2:93 passes made: 100 passes allowed
TP1: 1 passes made: 100 passes allowed

3-58 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

QUIT
The QUIT command exits from the DEBUG utility. All tracepoint
information collected will be kept, and active tracepoints will continue
collecting information until they reach specified limits. GO is a synonym
for QUIT.

QUIT

Responses

* token error * invalid character at column ____
Explanation: The user issued the QUIT command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command without specifying any parameters.

unknown symbol ____ at column ____
Explanation: The user issued the QUIT command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command without specifying any parameters.

 DEBUG commands and subcommands 3-59

DEBUG Technical Assistance Manual BCS36 and up

RESET
The RESET command resets the tracepoint counter for the specified
tracepoint to zero. All data previously collected by the tracepoint is lost.
The tracepoint will not change state (for example, from active to not active).
If ALL is specified, the tracepoint counters for all tracepoints are reset.

RESET tracepoint_name
ALL

Where:

tracepoint_name is the name of an existing tracepoint.

ALL specifies the counters for all tracepoints are to be set
to zero, and all previously collected data is lost.

Responses

* token error * invalid character at column ____
Explanation: The user issued the RESET command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name or
ALL.

expecting tracepoint name or ALL

Explanation: The user issued the RESET command without specifying
any parameters.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name or
ALL.

unknown symbol ____ at column ____
Explanation: The user issued the RESET command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name or
ALL.

Unknown tracepoint name

3-60 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

Explanation: The user issued the RESET command, specifying an
undefined tracepoint name.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid tracepoint name or
ALL.

Usage notes
The tracepoint remains in its current state (active or not active) following a
RESET.

Examples:

1 The following command string resets the counter for tracepoint TP1:
>RESET TP1

2 The following command string resets the counter for all tracepoints
defined:
>RESET ALL

 DEBUG commands and subcommands 3-61

DEBUG Technical Assistance Manual BCS36 and up

SHELP
The SHELP command displays syntax and usage notes for commands and
subcommands which are not for general use and not mentioned by the HELP
command. Commands can be executed at the CI level of the MAP;
subcommands can be included in tracepoint definitions.

SHELP command_name
subcommand_name

Where:

command_name is one of the following:

• ACTIVATE

• ALLOCATE

• BIND

• CLEAR

• CPID

• DEACTIVATE

• DEFINE

• DELBIND

• DISPLAY

• DISPLAY PS

• EXTEND

• FDEFINE

• HELP

• LISTBIND

• PRINT

• QUIT

• RESET

• SHELP

• STATUS

subcommand_name is one of the following:

• ACTIVATE

• BIND

• DEACTIVATE

• DISPLAY

• EXITIF

3-62 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

• SAVECCB

• SAVECDB

• SAVEEXT

• TIMESTAMP

• TRACEBACK

Responses

* token error * invalid character at column ____
Explanation: The user issued the SHELP command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid command or
subcommand name.

unknown debug command
Explanation: The user issued the SHELP command and specified an
unknown command or subcommand name.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid command or
subcommand name.

unknown symbol ____ at column ____
Explanation: The user issued the SHELP command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid command or
subcommand name.

Example:

The following command displays the general secret help screen:

 DEBUG commands and subcommands 3-63

DEBUG Technical Assistance Manual BCS36 and up

> SHELP
SHELP - secret

SHELP shows syntax and usage notes for a command
or subcommand. Commands may be executed at CI level;
subcommands may be included in tracepoint definitions.
Secret commands are undocumented and not to be publicized
This display is shown if no parameter is given.
Parameters: [<command_name>  <subcommand_name> 
 <secret_name>]
<command_name> is: QUIT  HELP  DISPLAY  DISPLAY PS

 DEFINE  EXTEND  ACTIVATE  DEACTIVATE  CLEAR
 STATUS  BIND  PRINT  RESET  LISTBIND  DELBIND
 LIMIT  ALLOC  CPID

<subcommand_name> is: DISPLAY  ACTIVATE  DEACTIVATE
 TRACEBACK  BIND  EXITIF  TIMESTAMP  SAVECCB
 SAVECDB  SAVEEXT

<secret_name> is: SHELP  FDEFINE

3-64 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

STATUS
The STATUS command displays the name, location, activation state, and
subcommand list of one or all tracepoints. The output is in such a format
that a DEBUG exec can be created. A blank line is needed in the DBUG
exec to terminate tracepoint subcommand definitions. [For more
information on these execs, see DEBUG EXECS ($READ COMMAND) on
page 3-2.] If no parameter is specified, the number of defined, active, and
restart active tracepoints is displayed as well as the current tracepoint data
and subcommand buffer sizes.

STATUS tracepoint_name
ALL

Where:

tracepoint_name is the name of an existing tracepoint.

ALL specifies that the definition (including all
subcommands) is to be displayed for all tracepoints.

Responses

* token error * invalid character at column ____

Explanation: The user issued the STATUS command, and the tokenizer
encountered a character it did not recognize.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name, ALL,
or no parameters.

active

Explanation: The user issued the STATUS command with the tracepoint
name parameter, and the specified tracepoint is active.

System Action: The command is executed.

User Action: No user action is required.

deactivated: maximum passes made

Explanation: The user issued the STATUS command with the tracepoint
name parameter, and the specified tracepoint is deactivated.

System Action: The command is executed.

User Action: No user action is required.

 DEBUG commands and subcommands 3-65

DEBUG Technical Assistance Manual BCS36 and up

defined tracepoints ____; active ____; restart activate ____
Data buffer size: ____ words.
Subcommand buffer size: ____ subcommands.

Explanation: The user issued the STATUS command without specifying
any parameters.

System Action: The command is executed.

User Action: No user action is required.

inactive
Explanation: The user issued the STATUS command with the tracepoint
name parameter, and the specified tracepoint has been defined but not
activated.

System Action: The command is executed.

User Action: No user action is required.

restart activation

Explanation: The user issued the STATUS command with the tracepoint
name parameter, and the specified tracepoint is to be activated upon restart.

System Action: The command is executed.

User Action: No user action is required.

unknown symbol ____ at column ____

Explanation: The user issued the STATUS command and specified extra
parameters beyond the command.

System Action: The command is not executed.

User Action: Reenter the command, specifying a tracepoint name, ALL,
or no parameters.

unknown tracepoint name
Explanation: The tracepoint for which the user has requested the status is
not defined in the system.

System Action: The command is not executed.

User Action: Reenter the command, specifying a valid tracepoint name.

Example:

The following command string displays the status of tracepoint TP1:

3-66 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

>STATUS TP1
define TP1 LNUTILUI CLOSE_LI 003 % at 3A16D1 inactive
DI R 40 N=120

 DEBUG commands and subcommands 3-67

DEBUG Technical Assistance Manual BCS36 and up

Tracepoint subcommands
The subcommands in this section can be entered after a tracepoint has been
defined. To add subcommands to a tracepoint that has already been defined,
use the EXTend command.

ACTIVATE
The ACTivate subcommand activates a previously defined tracepoint so that
it can begin collecting data. All tracepoints are deactivated following a
restart.

ACTivate tracepoint_name

Where:

tracepoint_name is the name of an existing tracepoint.

Responses

* token error * invalid character at column ____

Explanation: The user issued the ACTivate subcommand, and the
tokenizer encountered a character it did not recognize.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a valid tracepoint
name.

ACT/DEACT ALL is an invalid subcommand
Explanation: The user issued the ACTivate subcommand, specifying
ALL as a parameter.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a defined tracepoint
name.

expecting tracepoint name
Explanation: The user issued the ACTivate subcommand with no
parameters.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a tracepoint name.

unknown symbol ____ at column ____

3-68 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

Explanation: The user issued the ACTivate subcommand and specified
extra parameters beyond the command.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a tracepoint name.

unknown tracepoint

Explanation: The user attempted to activate a tracepoint that had not
been defined.

System Action: The subcommand is not executed.

User Action: Define the tracepoint and then activate it, or activate a
tracepoint that is already defined.

unknown tracepoint name
Explanation: The user attempted to activate a tracepoint that had not
been defined.

System Action: The subcommand is not executed.

User Action: Define the tracepoint and then activate it, or activate a
tracepoint that is already defined.

Usage notes
1 All tracepoints are deactivated following a restart.

2 ACTivate is both a tracepoint command and a subcommand, which
means that a tracepoint can activate another tracepoint when the first
tracepoint gets hit. This is useful if a tracepoint gets hit often, and the
user is interested only when another piece of code is executed first.

Example:

The following command string within a tracepoint definition activates
tracepoint TP1:

ACT TP1

 DEBUG commands and subcommands 3-69

DEBUG Technical Assistance Manual BCS36 and up

BIND
The BIND subcommand assigns a symbolic name (bind name) to the
specified storage reference. The name can now be used in further storage
references but is only known within the tracepoint. Illegal bind names
include names which can be interpreted as hex numbers or storage reference
elements (for example, R, SH, or L). A tracepoint BIND is local to that
tracepoint, but a BIND created at the CI level is global.

BIND bind_name TO storage_reference

Where:

bind_name is a string of up to eight characters, excluding
certain values reserved for DEBUG, such as hex
numbers and storage reference elements (1, 2, 3, ...
D, E, F, L, PP, PR, R, S, SB, SH).

storage_reference is the storage reference. Acceptable types include
the following:

• absolute address

• base register

• S (expression stack top)

• SB or L (base of current stack frame)

• bind name

• module name followed by store type.

Store type can be any of the following:

- PR.offset (for protected global variables)

- PP .offset (for private global variables)

- SH.offset (for shared global variables).

Responses

* token error * invalid character at column ____
Explanation: The user issued the BIND subcommand, and the tokenizer
encountered a character it did not recognize.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a bind name and
storage reference.

expecting bind_id

3-70 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

Explanation: The user entered the BIND subcommand without
specifying any parameters, or the user entered a hexadecimal number for a
bind name.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a bind name and
storage reference.

L,S,R,SB,SH,PR,PP are illegal bind names
Explanation: The user attempted to BIND using an illegal bind name or
entered BIND and a storage reference without entering a bind name.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a legal bind name.

unknown symbol ____ at column ____

Explanation: The user issued the BIND subcommand and specified extra
parameters beyond the command.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a bind name and
storage reference.

Usage notes
When BIND is used as a tracepoint subcommand, the BIND is only known
inside the tracepoint. If the same bind name is used both inside the
tracepoint (local) and outside the tracepoint (global), the locally defined one
has priority.

Example:

The following command string within a tracepoint definition binds storage
reference OAUUI1:PR.60 to bindname JTG:

BIND JTG TO OAUUI1:PR.60

This results in an alternative reference for OAUUI1:PR.60. Compare the
following two equivalent DIsplay commands:

> DI OAUUI1:PR.60 BT 4 (&0)
08354D: 0008

> DI JTG BT 4 (&0)
08354D: 0008

 DEBUG commands and subcommands 3-71

DEBUG Technical Assistance Manual BCS36 and up

DEACTIVATE
The DEACTivate command deactivates tracepoints that have been
previously defined and activated. A tracepoint is deactivated after a restart
and once its limit is reached. For more information on tracepoint limits,
refer to LIMIT on page 3-52.

DEACTivate tracepoint_name

Where:

tracepoint_name is the name of an existing tracepoint to be deactivated.

Responses

* token error * invalid character at column ____
Explanation: The user issued the DEACTivate subcommand, and the
tokenizer encountered a character it did not recognize.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a tracepoint name.

ACT/DEACT ALL is invalid subcommand
Explanation: The user issued the DEACTivate subcommand, specifying
ALL as a parameter.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a tracepoint name.

expecting tracepoint name
Explanation: The user issued the DEACTivate subcommand with no
parameters.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a tracepoint name.

unknown symbol ____ at column ____

Explanation: The user issued the DEACTivate subcommand and
specified extra parameters beyond the command.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a tracepoint name.

UNKNOWN TRACEPOINT NAME

3-72 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

Explanation: The user attempted to deactivate a tracepoint that had not
been defined.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a tracepoint that is
already active.

Example:

The following command string within a tracepoint definition deactivates
tracepoint TP1:

DEACT TP1

 DEBUG commands and subcommands 3-73

DEBUG Technical Assistance Manual BCS36 and up

DISPLAY CCBPTR, ECCBPTR, CDBPTR, and RUNPPTR
CCBPTR, ECCBPTR, CDBPTR, and RUNPPTR (Runningproc) are
pointers to their respective blocks. To access a field in the block, the pointer
must first be dereferenced.

DIsplay pointer_name@

Where:

pointer_name
is one of the following pointers:

• CCBPTR

• ECCBPTR

• CDBPTR

• RUNPPTR

Responses

* token error * invalid character at column ____
Explanation: The user issued the DI pointer subcommand, and the
tokenizer encountered a character it did not recognize.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a pointer name.

unknown symbol ____ at column ____
Explanation: The user issued the DI pointer subcommand and specified
extra parameters beyond the command.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying valid pointer name.

Example:

The following command string within a tracepoint definition displays the
contents of the CPMBPTR field of the CCB:

DI CCBPTR@.0 ADDR
476F1C: 48821C

3-74 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

DISPLAY (data store)
The DIsplay command is used to display values in data and program store.
This section describes how to use the DIsplay command for displaying
values in data store. For information on displaying program store, refer to
DISPLAY PS (Program Store) on page 3-35.

Note: Refer to Data Store on page 5-3 for the differences in data store on the
NT40 and SuperNode.

DIsplay storage_reference store_index size format

Where:

storage_reference
is the storage reference. Acceptable types include the
following:

• absolute address (up to six hex digits), optionally
preceded by # (for example, #39AE4)

• base register other than R 0 (in the format R nn;
for example, R 4)

This option is especially useful at the tracepoint
level.

• S (expression stack top); n words below the top of
the stack (for example, S.-2 or S.-#2)

• SB or L (base of current stack frame); local
variable at offset nn (for example, L.nn or L.#nn
or SB.nn or SB.#nn)

• bind name (as defined using the BIND command
or subcommand)

• module name followed by store type.

Store type can be any of the following:

- PR.offset (for protected global variables)

- PP .offset (for private global variables)

- SH.offset (for shared global variables).

Offset can be up to four hex digits.

store_index can be any of the following:

• .nn (word offset on NT40 or byte offset on
SuperNode)

• .nn, b, w (word offset on NT40 or byte offset on
SuperNode, bit offset, bit width)

 DEBUG commands and subcommands 3-75

DEBUG Technical Assistance Manual BCS36 and up

This is a reference to a bit offset within a word. If
no bit width is specified, the default is the rest of
the word. This accesses a bit field of width w bits,
at offset nn words, b bits from the given address.
Another representation for this reference is the
following.
.nn OFB b W w.

• .nn@ (dereferencing a pointer at the address
given)

• .nn (i) (indexing descriptors)

• .nn B (i) (indexing bit descriptors)

• .nn T x (i) (indexing a table given the stride; x
defaults to 1)

• .nn BT x (i) (indexing a bit table given the stride;
x defaults to 1)

• .nn TB x (i) (indexing a bit table given the stride;
x defaults to 1).

Where:

• nn=word offset on NT40 or byte offset on
SuperNode

• b=bit offset

• w=bit width

• x=table stride

• i=index in table.

i can be either of the following:

- &number (any numeric value)

- storage_reference (to at most one word of
store; see previous explanation).

size is the number, in bytes (form N=nn), of items to be
displayed. If not specified, the rest of the procedure is
displayed.

format is one of the following output formats:

• DEC (decimal output)

• HEX (hexadecimal output)

• ADDR (six-digit hexadecimal address)

• DESC (address - size - stride)

• CHAR (readable character string)

3-76 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

• CCB (Display is formatted as Call Condense
Block if the DISP_CALL_PROCS are bound in.
Otherwise, it is dumped in hex. Attempting to
format non-CCB data as a CCB may cause a trap.)

• CDB (Display is formatted as a Call Data Block if
the DISP_CALL_PROCS are bound in.
Otherwise, it is dumped in hex. Attempting to
format non-CDB data as a CDB may cause a
trap.)

• EXT (Display is formatted as an Extension Block
if the DISP_CALL_PROCS are bound in.
Otherwise, it is dumped in hex. Attempting to
format non-EXT data as an EXT may cause a
trap.)

• typename (for Data Dictionary format). This is
mainly used to display I/O type data. All type
names known by DDEDIT are allowed.

Responses
Because there are numerous system responses for the DIsplay command,
they are listed here without explanations. Most of the responses are
self-explanatory.

* token error * invalid character at column ____
cannot do word offset on bit field
data is too large for tracepoint buffer
desc, addr formats only apply to word items
Desc stride must be entered as D n
expecting =
expecting base register number
expecting bit offset
expecting bit width
expecting closing parenthesis
expecting decimal number
expecting hexnumber
expecting MOD:,PP,PR,SH or L,SB,R,S,& number, or addr
expecting number
expecting offset
expecting opening parenthesis
expecting PP,PR or SH
expecting storeref
failed to scan transitive uses list
illegal base register number
illegal hex number
illegal hexnumber
illegal index

 DEBUG commands and subcommands 3-77

DEBUG Technical Assistance Manual BCS36 and up

illegal indexing
invalid base register number
invalid bit stride
invalid dec number
invalid dereference
Invalid Ecore bit descriptor syntax
invalid format or N
invalid module name
invalid perprocess reference
modifier cannot operate on one word of a register
modifier cannot operate on this register
negative address not accepted
PP only valid for perprocess module
PP reference at CI level requires module name
PR reference at CI level requires module name
protected segment does not exist
SH reference at CI level requires module name
shared segment does not exist
the first modifier must be @
too many digits
too many modifiers
typename not found
unable to allocate store
unknown bind name
unknown symbol
unknown symbol ____ at column ____

Usage notes
1 Recursive indexing or dereferencing is allowed.

2 Invalid indexing or dereferencing gives an error message.

3 Indexing or dereferencing cannot follow bit offset.

4 Further qualification of indexing or dereferencing is possible.

Example:

Refer to Chapter 4 on page 4-1 for examples of displaying data store.

3-78 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

EXITIF
The EXITIF subcommand exits tracepoint processing if the specified
relationship is true. By putting IF statements in the tracepoint, this
subcommand helps the user to reduce the collected data to only those
conditions in which he is interested.

Note: No error message appears if the evaluation of either argument fails. The
subcommand is simply ignored.

Note: Storage references used as arguments may not be larger than one word.
This includes long word registers on SuperNode. Refer to EXITIFs on page
5-11 for differences in the EXITIF command on the NT40 and SuperNode.

EXITIF argument operator argument

Where:

argument is each storage reference or number to be compared.
Acceptable types include the following:

• number

• absolute address

• base register

• S (expression stack top)

• SB or L (base of current stack frame)

• bind name

• module name followed by store type.

Store type can be any of the following:

- PR.offset (for protected global variables)

- PP .offset (for private global variables)

- SH.offset (for shared global variables).

operator is one of the following relational operators:

• = (equal to)

• < (less than)

• > (greater than)

• ≠ (not equal to)

• <= (less than or equal to)

• >= (greater than or equal to)

• +> (unsigned greater than)

 DEBUG commands and subcommands 3-79

DEBUG Technical Assistance Manual BCS36 and up

• +< (unsigned less than).

Responses

* token error * invalid character at column ____

Explanation: The user issued the EXITIF subcommand, and the
tokenizer encountered a character it did not recognize.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying valid parameters.

expecting relational operator

Explanation: The user failed to specify a relational operator.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying two arguments,
separated by a relational operator.

expecting MOD:,PP,PR,SH or L,SB,R,S,& number, or addr
Explanation: The user entered the EXITIF subcommand without
specifying two arguments and a relational operator.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying two arguments,
separated by a relational operator.

expecting storeref
Explanation: The user entered the EXITIF subcommand, specifying one
argument and a relational operator.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying two arguments,
separated by a relational operator.

invalid relational operator
Explanation: The user entered the EXITIF subcommand, specifying an
invalid relational operator or no relational operator.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying two arguments,
separated by a valid relational operator.

unknown symbol ____ at column ____

3-80 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

Explanation: The user issued the EXITIF subcommand and specified
extra parameters beyond the command.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying correct parameters.

Usage notes
If one of the storage references is constant, it must be prefaced with an
ampersand.

Example:

The following command string exits tracepoint if the storage reference
L.#1C0 is greater than zero:

EXITIF L.#1C0 > &0

 DEBUG commands and subcommands 3-81

DEBUG Technical Assistance Manual BCS36 and up

SAVECCB
The SAVECCB subcommand saves a copy of the Call Condense Block
(CCB) for the active call. The CCB is displayed in symbolic form or in hex
form (if DISPCALL is absent).

SAVECCB

Responses

* token error * invalid character at column ____
Explanation: The user issued the SAVECCB subcommand, and the
tokenizer encountered a character it did not recognize.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand without specifying any
parameters.

unknown symbol ____ at column ____
Explanation: The user issued the SAVECCB subcommand and specified
extra parameters beyond the command.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand without specifying any
parameters.

Usage notes
1 This subcommand is only accepted in offices where call processing

software is loaded. If base register 4 is NIL when the tracepoint is hit,
an error message will be displayed when the data is printed. Note also
that base register 4 can point to data other than CCBs when not in a call
processing environment.

2 Only four different CCBs and CDBs can be saved before the oldest one
is overwritten.

3 This subcommand is only valid in the context of a call process (CALLP).

Example:

The following is printout of a SAVECCB subcommand. Because of the
print format, the lines that are too long to be printed are split into two lines.

SAVECCB
CPTLB :

LINK/CPMBPTR = 48821C MYINDEX = 27 00

3-82 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

PROCQD = N
STATE = LINKED AUDIT = 0000

LINKCOUNT = 0001
LETTERCOUNT = 0003 LETTERC = C102

WAKEID = FFFF
LETTERQ = FFFFFF CCBTIMEQ.SUCC = FFFFFF

CCBTIMEQ.PREV = FFFFFF
FASTECCBINDEX = 0000 UP_OVER_WARM = N

ECCBINDEX = 00 00
EXTPTR = FFFFFF SEQNO = 0000 CS =

ORIGIN XBITS = 0000
FORCEUNAVAIL = N IBN = N SA =

N FASTSEQNO = 0020
CMI = 0000 CTRLPORT = 0000 CCBFC =

0000
RECEIVER = <NIL>
CCBFA :

0008 0010

PORT1PERM :
AGENT = <NIL>
PATHEND :
CHNL = 0000 PORT = 0000 NM_PAIR = 0000 NM_CHNL

= 0000 LOGICAL = 0001
GAIN = 0000 LOSS = 0000 INTEG_VAL = 00FF

PREFERRED_PL = EVEN_PLANE
PMCHNL = 200 PORT = 01 CFWBIT = N

AGENT_SUSPECT = N
THREAD = 00C7 FMTCODE = 05 UTR_AVAILABLE = N
TID : NODE_NO = 044 TRMNL_NO_MSN = 0

TRMNL_NO_LSB = 09 TSI = 0
FMTAREA:

EAE1 6F00 EAE0 6F00 4ABF 6E00 FE08 FFFF FFFF FFFF
MBUFFPTR = 0007B8

PORT2PERM :
AGENT = <NIL>
PATHEND :
CHNL = 0000 PORT = 0000 NM_PAIR = 0000 NM_CHNL

= 0000 LOGICAL = 0001
GAIN = 0000 LOSS = 0000 INTEG_VAL = 00FF

PREFERRED_PL = EVEN_PLANE
PMCHNL = 400 PORT = 02 CFWBIT = N

AGENT_SUSPECT = N
THREAD = 0000 FMTCODE = 00 UTR_AVAILABLE = N
TID : NODE_NO = 000 TRMNL_NO_MSN = 0

 DEBUG commands and subcommands 3-83

DEBUG Technical Assistance Manual BCS36 and up

TRMNL_NO_LSB = 00 TSI = 0
FMTAREA:

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
MBUFFPTR = FFFFFF

CHB :
XLAB:
RC = XLA_MO TXSEL = 0000

TX_TRMT =
IBN_TRMT_SET = N MIN_DIGITS = 0000

MAX_DIGITS = 0012
PREFIX_FENCE = 0000 DATA_VER = N

OC = LCL
TRAN_SYS = NA TYPECALL = NP

NPA_ADDED = N
TX_POS = NONE TXROUTE/TERM_AGENT = <NIL>
CALLED_DR =
RTE = N POS = N

RETRANSLAT = N

CALLING_DR/AUTH_CODE_DR =
SCREENING_IN = N CAN_LCS = N

CAN_SCRN = Y
XLASTAGE = INITIA ADP = N

BLK_OVLP = N
LONGHAUL = N HTRP = 0

SNPA = 518
XLT_FROM = 0 HTRC = N

VALID_/PRIVL = N
ANI_INFO :
ONI = N HOT = N TDN = N COIN = N
RSP = N ANI_FAIL = N SPARE2 = N SPARE3 = N

AMADATA :
0000 0000 0000 0000 0000 0000 0000 0000

SOURCEPARMS :
VALID_SOURCEPARMS = N NCOS = 0000

DESTIN = NIL_DE
CUSTGRP = SUBGRP = 0000

CALL_CHARACTER = 0000
DGCOLL_TABLE = 0000 SOURCE = NIL_SO

OWAT_ZONE = 0000
SOURCE_TRC = 0000 SMDR = N

SMDRB = N
ACR = N INTRAGROUP = N

ENABLE_CRL = N
CRL_REQUIRED = N ATTDNDOV = N

3-84 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

DNDPREEMPT = N
CALLED_DR_SHIFTED = N TDN = N

DOD_DESTIN = N
GROUP_INTERCOM = N ATTX = N

LINE_HAS_LNR = N

RTEB:
ROUTE = FDFDFD RC = RTR_IN

RTE_TYPE = IBN_RT
ROUTE_CHAIN = IN_CHA PREV_SATELLITE = N

CHOICE = DIRECT
OHQT_APPLIED = N QUEUEING_ACTIVE = N

OHQ = N
CANCSTDL = N INHIBIT_QUEUEING = N

HUNT = Y

TRMT = UNDT POS = 0000
TFR = NIL_TF

ANI_SPILL = N ANI_SPILL_9 = N
RECORDING_REGD = N

TS_OMREG = N SEIZE_FAILURE = N
AC_FTR_IN_EFFECT = N

RESELECT = N
DIST_RING = N

FTR_IN_EFFECT = N
LCO_CALL = N CHARGE_TREATMENT = CHGA
FORCE_CC_TIMI = N AC_ATTACHED = N
EAEO_DATA :
EA_CARRIER = ATT EA_LOCAL = N EA_OCS_NEEDED = N
CALL_EVENT = INITIAL_EVENT

ECHOSUP = <NIL>
OVLPD:
REALCMI = 0 DRCOUNT = 0 OLSTATE = OLFIRST

PSTATE : PROCESSOR = NIL_PRCR STATE = 0000
MBI = 0000 CHARGE = N DATE_CALL = N

TIMESTAMP = 0021 AD74
ORIGDISP = 0000 TERMDISP = 0000 OCC_CALL = N

OCC_INCOM = N
NO_INTRAS = N EA_CALL = N PIC_CALL = N

LATA_CALL = INTRALATA
STATE_CAL = INTRAS TRD_TIMIN = NO_TRD TPS_CP = N

 DEBUG commands and subcommands 3-85

DEBUG Technical Assistance Manual BCS36 and up

SAVECDB
The SAVECDB subcommand saves a copy of the Call Data Block (CDB)
for the active call. The CDB is displayed in symbolic form or in hex form
(if DISPCALL is absent).

SAVECDB

Responses

* token error * invalid character at column ____
Explanation: The user issued the SAVECDB subcommand, and the
tokenizer encountered a character it did not recognize.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand without specifying any
parameters.

unknown symbol ____ at column ____
Explanation: The user issued the SAVECDB subcommand and specified
extra parameters beyond the command.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand without specifying any
parameters.

Usage notes
1 This subcommand is only accepted in offices where call processing

software is loaded. If base register 5 is NIL when the tracepoint is hit,
an error message will be displayed when the data is printed. Note also
that base register 5 can point to data other than CDBs when not in a call
processing environment.

2 Only four different CCBs and CDBs can be saved before the oldest one
is overwritten.

3 This subcommand is only valid in the context of a call process (CALLP).

Example:

The following is a printout of a SAVECDB subcommand. Because of the
print format, the lines that are too long to be printed are split into two lines.

3-86 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

SAVECDB
CPMB:

LINK/CPTLBPTR = 3E1248
MAILBOX:

MBQLINK = FFFFFF MBPROCQD = N CLONED = N
MBINDEX = 0000

MBLETTERCOUN = 0002 MBPROCPTR = 4BEDA9
MBLETTERQ = FFFFFF

STATE = CPMBLINKED MILTIWAIT = N
STATUS = PROCESSING

MESSAGE :
MT = 000C - ORIGINATION_MSG
BODY:

C000 0000 D800 0000 4C20 1400 0000 D61E 0454 C94A
0554 7364 D618 0000 0000 0000 0000 0000 0000 5553
4342 4359 454C 2020 4215

TID = NODE_NO = 044 TRMNL_NO_MSN = 0
TRMNL_NO_LSB = 09

TEMPTIMESTAMP = 010 AD74 NETWORK_CONNECTION_MADE = N
NCCLS = 0

CDBRTEB:
GROUP_CPID = HUNT GRP 200 MEM 3:

 LEN REM2 02 0 15 12 DN 6212057
TERMINAL_CPID = LEN REM2 02 0 15 12 DN6212057
CONNECTION_TYPE= D REROUTE_ELEMENT = N CST_L =N
CST_H = N RECREATE_CDBRTEB = Y ERWT_ACCEPTED

=N
WAIT_FOR_COT_TO= N GRPSC = Y

FAST PROC = 0

 DEBUG commands and subcommands 3-87

DEBUG Technical Assistance Manual BCS36 and up

SAVEEXT
The SAVEEXT subcommand saves up to ten extension blocks of the given
type (or all types) for the active call. The EXT is displayed in symbolic
form unless hex is specified or no symbolic procedure is built into the load.

SAVEEXT format_code HEX
ALL

Where:

format_code is the name of an extension block type.

ALL specifies that all types of extension blocks are to be
displayed.

HEX specifies that the extension block is to be displayed in
hexadecimal form.

Responses

* token error * invalid character at column ____
Explanation: The user issued the SAVEEXT subcommand, and the
tokenizer encountered a character it did not recognize.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a format code or ALL.

<format_code> is: ____
Explanation: The user issued the SAVEEXT subcommand, specifying
the format code parameter.

System Action: The subcommand is executed.

User Action: No user action is required.

<format_code> is the name of an extension block type.
Explanation: The user issued the SAVEEXT subcommand and specified
an invalid format code.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a valid format code.

expecting extension block parameters

3-88 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

Explanation: The user entered the SAVEEXT subcommand without
specifying any parameters.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a format code or ALL.

Only one saveext subcommand per tracepoint.
Explanation: The user attempt to issue two SAVEEXT subcommands for
a single tracepoint.

System Action: The subcommand is not executed.

User Action: No user action is required.

unknown symbol ____ at column ____
Explanation: The user issued the SAVEEXT subcommand and specified
extra parameters beyond the command.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying a valid format code or
ALL.

Usage notes
1 This subcommand is only accepted in offices where call processing

software is loaded. If base register 6 is NIL when the tracepoint is hit,
an error message will be displayed when the data is printed. Note also
that base register 6 can point to data other than EXTs when not in a call
processing environment.

2 Only four different EXTs can be saved before the oldest one is
overwritten.

3 This subcommand is only valid in the context of a call process (CALLP).

 DEBUG commands and subcommands 3-89

DEBUG Technical Assistance Manual BCS36 and up

TIMESTAMP
The TIMESTAMP subcommand displays the current time when the
tracepoint is executed. This is often the first subcommand entered. The
time printed can be used to correlate logs with a tracepoint hit.

TIMESTAMP

Responses

* token error * invalid character at column ____
Explanation: The user issued the TIMESTAMP subcommand, and the
tokenizer encountered a character it did not recognize.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand without specifying any
parameters.

unknown symbol ____ at column ____
Explanation: The user issued the TIMESTAMP subcommand and
specified extra parameters beyond the command.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand without specifying any
parameters.

Example:

Following is an example of output from the TIMESTAMP subcommand.

TIMESTAMP
TIME 1988/04/08 16:24:31.498

3-90 DEBUG commands and subcommands

TAM-1001-008 Standard 03.02 December 1993

TRACEBACK
The TRACEBACK subcommand saves a specified number of procedure
calls, saving a specified number of words of data at each call.

TRACEBACK number_of_levels words_per_level

Where:

number_of_levels
is the number of procedure calls to be saved. The
default is 4.

words_per_level level is the number of words of data to be saved at
each call. The default is 16.

Responses

* token error * invalid character at column ____
Explanation: The user issued the TRACEBACK subcommand, and the
tokenizer encountered a character it did not recognize.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying the correct
parameter(s) or no parameters.

expecting positive number
Explanation: The user entered values for number_of_levels and/or
words_per_level that were less than one.

System Action: The subcommand is not executed.

User Action: Reenter the subcommand, specifying values greater than or
equal to one for number_of_levels and/or words_per_level.

Procedure not found at ____

Explanation: This response occurs when there is a stack frame error or
when there are no more calling procedures.

System Action: The subcommand is not executed.

User Action: Try the subcommand again.

Traceback terminated.

Explanation: This response occurs when there is a stack frame error or
when there are no more calling procedures.

 DEBUG commands and subcommands 3-91

DEBUG Technical Assistance Manual BCS36 and up

Usage notes
The user will get x + 1 (number_of_levels + 1) stack frames (one for the
procedure and x calling procedures). If, for a stack frame, the
words_per_level is larger than the number of parameters and locals, then the
stack frame saved will be the correct size. In other words, it is possible to
get a partial stack frame, but it is not possible to get more than a full stack
frame.

Example:

The following is a printout of sample output from the TRACEBACK
subcommand without any parameters:

TRACEBACK

LNUTILUI:ALLOCATE+#0003 IC=3A14C3 SB=000E56
3C09 28FF 0001 1B79 FFFF 006E 005A 001F
1AA4 003C 0030 0011 0001

XLALCZI:XL_ORIG_+#0119 IC=3C1B79 SB=000E41
0001 3C09 28FF 125C 3E00 1264 3E00 0000
0000 0001 BF06 4800 6E00 0000 001F 001C

KSETALCI:KSET_ORI+#0344 IC=6EF21A SB=000E1E
0001 3C09 28FF 125C 3E00 3C19 2808 001C
0E19 9ED0 6E00 009C 001A 0000 0001 0008

LSETPRCI:LINE_SETUP_P+#019F IC=3B2813 SB=000E06
3C09 28FF 00C7 A03B 3E00 0001 0000 0000
AFDA 00C7 0000 1264 3E00 2910 4A00 EAE0

LNSTART:LINE_STA+#049A IC=3B1D32 SB=000DF8
3C09 28FF 0001 3C09 28FF 125C 3E00 0001
0000 3E00

DEBUG Technical Assistance Manual BCS36 and up

4-1

Displaying data store
The DISPLAY command is used to display data. This part describes several
methods for displaying data. First, the more simple forms of data display
are explained. Next, how to get friendly output, followed by methods to
display complex data structures are explained.

All addresses, offsets, field widths, and base register numbers are interpreted
as hexadecimal numbers. However, they may optionally be preceded by an
octothorpe (#). Constants and repetition values are interpreted as decimal
numbers unless they are preceded by an octothorpe (#). Strides are also
interpreted as decimal numbers unless preceded by an octothorpe (#). A
stride is the width of an element of a table.

Note: Refer to Data store on page 5-3 for a description of the differences in
data store in the NT40 and SuperNode.

Format of DEBUG output from DISPLAY command
This section describes the format of DEBUG output following the DIsplay
data store command.

When a DIsplay command is used, the output format is HEX, unless
otherwise specified. The following are possible output formats for the
DIsplay command:

DEC: decimal output, eight items per line, preceded by the hex
address of the first item. Items are printed in ascending
address order.

HEX: hexadecimal output, eight items per line, preceded by the hex
address of the first item. Items are printed in ascending
address order.

ADDR: six hex digits per line, preceded by the hex address of the first
item. Items are printed in ascending address order.

DESC: three-word items (address-size-stride), one item per line,
preceded by the hex address of the descriptor. Items are
printed in ascending address order.

4-2 Displaying data store

TAM-1001-008 Standard 03.02 December 1993

CHAR: continuous readable character string of up to 45 characters
per line, preceded by the hex address of the first character.
Characters are printed in ascending address order.

Multiword table items:
• Stride of eight or less: single item per line, preceded by

the hex address of the first item on each line. Items are
printed in ascending address order.

• Stride greater than eight: eight words per line, with a new
line for the start of each item. Each line is preceded by
the hex address of the first item on each line. Items are
printed in ascending address order.

CCB: display is formatted as a Call Condense Block if the
DISP_CALL_PROCS are bound in. Otherwise, it is dumped
in hex. Attempting to format non-CCB data as a CCB may
cause a trap.

CDB: display is formatted as a Call Data Block if the
DISP_CALL_PROCS are bound in. Otherwise, it is dumped
in hex. Attempting to format non-CDB data as a CDB may
cause a trap.

EXT: display is formatted as an Extension Block if the
DISP_CALL_PROCS are bound in. Otherwise, it is dumped
in hex. Attempting to format non-EXT data as an EXT may
cause a trap.

typename: used for Data Dictionary format. This is mainly used to
display I/O type data. All type names known by DDEDIT are
allowed.

Note: It is possible to add types to the data dictionary using
DDEDIT. From DDEDIT, type HELP ADDTYPE.

In all cases the length of the output line is less than the width of the MAP
conversation area. An example of each output format is given in Figure 4-1
on page 4-3 .

Refer to Figure Figure 4-8 on page 4-11 for additional examples of
displaying data using different output formats.

 Displaying data store 4-3

DEBUG Technical Assistance Manual BCS36 and up

Figure 4-1xxx
Using different output formats

• No output format specified (default is HEX):

>DI LOGS:
PR.3A 016F48: 5645

• Output format DEC specified:

>DI LOGS:
PR.2D DEC 01701B: -515

• Output format ADDR specified:

>DI LOGS:
PR.3A ADDR 016F48: 005645

• Output format DESC specified:

>DI LOGS: PR.3C DESC
016F4A: address 6F4F4C stride 4C size 0108

• Output format CHAR specified:

>DI 083523 N=3 CHAR
083523: OAU

• Output format TYPENAME (CARD_CODE) specified:

>DI OAUUI1:
SH.A CARD_CODE 0617BC: 2X57AA

• CCB format is the same as the format of the SAVECCB
command output (see SAVECCB on page 3-81).

• CDB format is the same as the format of the SAVECDB
command output (see SAVECDB on page 3-85).

• EXT format is the same as the format of the SAVEEXT
command output (see SAVEEXT on page 3-87).

4-4 Displaying data store

TAM-1001-008 Standard 03.02 December 1993

Specifying an offset in a module
The LCOPY listing of a module on NT40 (or LISTER on SuperNode) gives
the offsets of declarations in private, shared, and protected store defined in
that module. To use this offset in order to display the data of those
declarations, type one of the following command strings.

DI <module_name>:PR.offset
for protected global variables

DI <module_name>:PP.offset
for private global variables

DI <module_name>:SH.offset
for shared global variables

It is also possible to enter successive offsets, as in the following command
string: DI module_name:

PR.offset.offset.offset

Note: Offsets are words on the NT40 and bytes on SuperNode.

Because private data is specific to a process, the use of: PP references is
only allowed in tracepoints. Moreover, only modules which are in the
transitive uses list of the tracepointed module may be referenced, so that
DEBUG can be certain that the private segment located is the one in context.
(This check is done at the time the tracepoint is defined.) A private segment
is in context only if it can be reached by following the links which the loader
inserts at the top of each private segment, beginning with the one currently
addressed by the private segment register (base register 3, or A3 on
SuperNode).

The context private segment for a module is usually (but not always) the
segment addressed by the latest occurrence of the module in the Perprocess
Segment Table (PST). Many of the private segments addressed by the PST
will not be accessible using DEBUG because the modules to which they
belong are not transitively used by the tracepointed module. If you want to
reference the latest PST entry for a module, and DEBUG will not let you
refer to it using: PP, you must use the QUERY CIBINCOM to find the
private segment address, then use absolute address format for the reference.

No private data references are allowed in tracepoints at which the private
segment register does not address the tracepointed module’s private segment
(for example, between a PRECALL instruction and the following
POSTCALL instruction). (This check is done at the time the tracepoint is
hit.)

The following response is from module TRKDUI.

 Displaying data store 4-5

DEBUG Technical Assistance Manual BCS36 and up

PROTECTED nil_trunk_index trunk_index; 001.0
%% -----------

PROTECTED trunk_nwm_perm_data DESC
 (|trunk_group_number|) OF nwm_area; 001.0 003.0

PROTECTED trunk_group_reservedlist_data DESC
 (|trunk_group_number|) OF

 trunk_group_reservedlist_data_type; 004.0 003.0

PROTECTED ktnildesc DESC OF kt_member_data; 007.0 003.0

PROTECTED mem_var_area_type_id, 010.0 001.0
tm2_member_type_id, 011.0 001.0
tm4_member_type_id, 012.0 001.0

All of the parameters from the previous listing are defined in protected store.
The offset and the length are given in the last two columns at the right hand
side of the listing. The commands in Figure 4-2 on page 4-5 are used to
display parameters.

Figure 4-2xxx
Displaying data using offsets

• Enter the following command string to display
trunk_nwm_perm_data:

>DI TRKDUI:
PR.1 N=3 09713C: 01F4 630A 3ED2

• Enter the following command string to display
trunk_group_reservedlist_data:

>DI TRKDUI:
PR.4 N=3 09713F: 01F4 4F03 6A98

• Enter the following command string to display
mem_var_area_type_id, tm2_member_type_id and
tm4_member_type_id:

>DI TRKDUI:
PR.10 N=3 09714B: 0389 FDFD FDFD

Refer to Displaying a field in the CCB on page 4-25 for another example
using successive offsets.

4-6 Displaying data store

TAM-1001-008 Standard 03.02 December 1993

Displaying contents of an absolute address
The following command string displays the contents of an absolute address:

DI absolute address

Figure 4-3 on page 4-6 provides examples of displaying the contents of an
absolute address.

Figure 4-3xxx
Displaying contents of an absolute address

• The following command string displays the
contents of location 5C5400:

>DI #5C5400
5C5400: 01CA

• The following command string displays the
contents of location 5C5400 plus the next
19 (decimal) words:

>DI 5C5400 N=20
5C5400: 01CA 9083 0015 136B 0012 19A4 0033 2610
5C5408: 01CA 9083 01CA 9083 01CA 9083 0014 0BCD
5C5410: 01CA 9083 0009 1971

Displaying a base register
The following command string displays the contents of the address where a
register is pointing:

DI R n

where n is any hex number of a base register, except 0.

Note: DI R 0 is invalid, because R0 always points to the current stack base. In
this case, use DI SB instead. (See Displaying local variables and parameters on
page 4-8.)

The register may be pointing to a data block (for example, CDB or CCB). It
is often pointing to a module head segment. Using a base register for
displaying data is practiced mainly in tracepoint subcommands. See
Figure 4-4 on page 4-7 for examples of command usage.

 Displaying data store 4-7

DEBUG Technical Assistance Manual BCS36 and up

Figure 4-4xxx
Displaying data using a base register

• The following command string displays the contents
of the memory pointed to by the address contained
in base register 4:

>DI R 4
76D2B5: 8051

• The following command string displays the
contents of a data block to which base register
4 is pointing:

>DI R 4 N=3
76D2B5: 8051 8054 8057

In the following list, registers are shown pointing to their corresponding
data. The current head segments are the head segments of the running
module unless they have been loaded in preparation for a procedure call by a
LDREG or PRECALL instruction.

R 1 ---> current protected head segment

R 2 ---> current shared head segment

R 3 ---> current private head segment

R 4 ---> the CCB if the process running is CALLP

R 5 ---> the CDB if the process running is CALLP

R 40 ---> the process control block of the currently running process

Note: Refer to Display CCBPTR, ECCBPTR, CDBPTR, and RUNPPTR on
page 3-73 for more information on displaying the contents of R 4, R 5, and R
40.

Note: Registers in the NT40 have different names than registers in SuperNode.
For SuperNode register names, refer to Registers on page 5-4.

Displaying the expression stack
To display values at the expressions stack, use the DISPLAY command with
the S parameter, as follows:

DI S

4-8 Displaying data store

TAM-1001-008 Standard 03.02 December 1993

The display command DI S points to the top of the stack (see Figure 4-5 on
page 4-8).

Figure 4-5xxx
Displaying the expression stack

Expression stack

DI S.-4

S points to top word of stack

-1

-2

-3

-4

To display the stack, use a negative value, as shown in Figure 4-6 on page
4-8.

Figure 4-6xxx
Displaying the expression stack

• The following command string displays the
top word of the stack:

>DI S
000DEF: 0006

• The following command string displays the
last 5 words that are pushed on the stack:

>DI S.-4 N=5
000DEB: 0DD2 CB7D 0000 0000 0006

Note: Refer to Expression stack on page 5-3 for differences in displaying the
expression stack in the NT40 and SuperNode.

Displaying local variables and parameters
Local variables and parameters are stored on the call stack. Either of the
following commands will display values at the stack:

 Displaying data store 4-9

DEBUG Technical Assistance Manual BCS36 and up

DI L
DI SB

These commands are most useful in a tracepoint subcommand because at
that time the register is pointing to that part of the call stack which has the
most interest.

The following listing is from module IOLOG:

DCL fill_device_name PROC (nodeno node_number, 001.0
 UPDATES devclass TABLE (|0 TO 7|) OF char, 001.0 004.0
 UPDATES devnum int) IS 003.0 001.0
BLOCK
 DCL space TABLE (|0 TO 15|) OF char, 005.0 008.0
 device_name device_names; 00d.0 004.0

Note: REF and UPDATES parameters are always two words long. REF and
UPDATES create an address on the stack that points to the item’s data area.
The size shown in the listing (far right column) is the size of the item’s data
area referred to by the address on the stack.

This listing indicates the following:

• parameter NODENO is defined at offset 0 and is 1 word long

• update parameter DEVCLASS is stored at offset 1 as a pointer to a data
area of 4 words long

• update parameter DEVNUM is stored at offset 3 as a pointer to a data
area of 1 word long

• local variable SPACE is a table at offset 5 and 8 words long

• local variable DEVICE_NAME is stored at offset #D and is 4 words
long.

To display these local variables it is necessary to set a tracepoint in this
procedure at the point where the variables are expected to contain interesting
data, and issue the DIsplay subcommands. See Figure 4-7 on page 4-10 for
examples. See Displaying update parameters on page 4-23 for an example
displaying the updates parameters DEVCLASS and DEVNUM.

4-10 Displaying data store

TAM-1001-008 Standard 03.02 December 1993

Figure 4-7xxx
Displaying local variables and parameters

• The following command string displays parameter
NODENO:

>DI SB
77BBC5: BBAA

• The following command string displays local
variable SPACE:

>DI L.5 N=8
77BBCA: 5446 4749 4541 4342 4541 4549 4342 4544

• The following command string displays local
variable DEVICE_NAME:

>DI L.D N=4
77BBD2: DB34 DAFE DE34 DE54

Note: Refer to Local variables on page 5-3 for differences in displaying the
local variables in the NT40 and SuperNode.

Output of multiple items
As stated before, every DI command can optionally be followed by:

<size> <format>

Note: The parameters <size> and <format> can be interchanged. So <format>
<size> is the same as the format shown here. For simplicity only the <size>
<format> syntax is used in this document.

If a DIsplay command is followed by N=10, then decimal 10 items will be
displayed. The item size is determined by what is displayed, according to
the following order of priority:

1 the output format, if it describes items not of word size (for example,
ADDR)

2 the table or DESC stride, if an indexing operation was performed

3 the bit field width, if a bit field was specified.

Some examples to clarify this order of priority are shown in Figure 4-8 on
page 4-11.

The same addresses are used in the examples in Figure 4-8 on page 4-11 in
order to compare the different output types.

 Displaying data store 4-11

DEBUG Technical Assistance Manual BCS36 and up

Figure 4-8xxx
Displaying multiple items

• No output format is specified. The item size is 1 word.

>DI TRKDUI: SH.3 N=20
063928: 0EBE 0012 1368 0033 2C28 01CA 9083 01CA
063930: 9083 01CA 9083 0014 0D35 01CA 9083 0009
063938: 0FDB 01CA 9083 003B

• The output format is ADDR. The item size is 2 words
(3 bytes shown).

>DI TRKDUI: SH.3 ADDR N=4
063928: 000EBE 001368 012C28 019083

• The output format is DESC. The item size is 3 words.

>DI TRKDUI: SH.3 DESC N=3
063928: address 001368 stride 12 size 0EBE
06392B: address 2C01CA stride 28 size 0033
06392E: address 019083 stride CA size 9083

• The output format is a bit field. The bit field starts
at bit 0, and the width is 4 bits.

>DI TRKDUI: SH.3,0,4 N=10
063928: 000E 000B 000E 0000 0002 0001 0000 0000
06392A: 0008 0006

Using the dereference operator @
To display the contents of a location pointed to by a pointer, use
dereferencing. Figure 4-9 on page 4-12 shows a pointer pointing to the
contents of a location.

Only a data location containing a valid address can be dereferenced. An
invalid dereference will not cause a trap, but a message is displayed.
Multiple dereferences are possible.

The following example of dereferencing shows a display of module
TRKDUI, the fourth word of shared store for 10 words.

>DI TRKDUI: SH.3 N=10
5C5403: 136B 0012 19A4 0033 2610 01CA 9083 01CA
5C540B: 9083 01CA

4-12 Displaying data store

TAM-1001-008 Standard 03.02 December 1993

Another example of dereferencing is given in Displaying queue problems on
page 4-24.

Assume that the fourth and fifth words of shared store of module TRKDUI
are a pointer. The following command string displays the contents of the
word (plus the next 19 words) where this pointer is pointing:

>DI TRKDUI: SH.3@ N=20
00136B: 2031 2020 0002 4B4F 2020 4157 2049 2020
001373: 2020 2020 1413 3811 D211 E0CC 7D06 190C
00137B: 0000 0000 5652 3231

Next assume that the fourth word of shared store of module TRKDUI is a
pointer which points to a pointer. The following command string displays
the contents of the word where the final pointer is pointing:

>DI TRKDUI: SH.3@@
202031: 0004

Figure 4-9xxx
Displaying the contents of a location

• The following command string displays the
contents of the pointer:

>DI 62AB8 ADDR
062AB8: 1643DE

• To display the contents of the address to which the
pointer points, use the dereference operator with the
following command string:

>DI 62AB8@
1643DE: AD12

43DE

1600

062AB8:

062AB9:

points to

AD121643DE:

Displaying fields in a structure
The offsets in a structure, as given in an LCOPY listing, can be used to
display data of the items in that structure using one of the following
command strings:

 Displaying data store 4-13

DEBUG Technical Assistance Manual BCS36 and up

DI <module_name>: PR.offset % protected global variables
DI <module_name>: PP.offset % private global variables
DI <module_name>: SH.offset % shared global variables

It is also possible to enter successive offsets, as in the following command
string:

DI module_name: PR.offset.offset.offset

The following display is part of the listing of TRKDUI:

TYPE trunk_members_prot 005.0
STRUCT

tmid trmnl_id, 001.8
digdbrecv digital_db_level, 001.8 000.4
digdbtrans digital_db_level, 001.c 000.4
digtrk BOOL, 002.0 000.1
sgrp trunk_subgroup_number, 002.1 000.1
in_only BOOL, 002.2 000.1
data_present BOOL, 002.3 000.1
offline BOOL, 002.4 000.1
halfpmc pm_channels, 002.5 000.9
name external_trunk_name, 003.0 000.e
suppl_data BOOL, 003.e 000.1
intrasw_chnl BOOL, 003.f 000.1
halfpe int 004.0 001.0

ENDSTRUCT;

Assume that this TYPE is declared in TRKDUI at offset 4 in protected store.
TRUNK_MEMBERS_PROT can be displayed as in Figure 4-10 on page
4-14. Note that the BOOL names are not written in. See Figure 4-11 on
page 4-14 for examples of displaying data using an offset.

4-14 Displaying data store

TAM-1001-008 Standard 03.02 December 1993

Figure 4-10xxx
TRUNK_MEMBERS_PROT display

DI TRKDUI:
PR.4

DI TRKDUI:
PR.4.1.1

or DI TRKDUI:
PR.6

tmid

 digdbtrans digdbrecv

 halfpcm

 name

 halfspe

Figure 4-11xxx
Displaying fields in a structure

• The following command string displays the first
word of trunk_members_prot:

>DI TRKDUI: PR.4
6D4FD5: 4219

• The following command string displays the third word
of trunk_members_prot by using successive offsets:

>DI TRKDUI: PR.4.1.1
6D4FD8: 03E8

• The following command string displays the complete
data block trunk_members_prot:

>DI TRKDUI: PR.4 N=5
6D4FD5: 4219 80C0 03E8 2909 851C

Bit field selection
When selecting a bit field, the user can specify the word offset, bit offset,
and bit width, as in the following command string:

DI storage_reference .nn,b,w

 Displaying data store 4-15

DEBUG Technical Assistance Manual BCS36 and up

Where:

nn is the word offset on NT40 or byte offset on SuperNode,

b is the bit offset (defaults to 1),

w is the width (defaults to rest of word).

Figure 4-12 on page 4-15 shows how bits 9 - 12 of the second word of
protected store are stored in module CPTABUI.

Figure 4-12xxx
Bits 9-12 of Second Word of Protected Store

CPTABUI:PR.O

bit:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x x

The following command string displays the contents of the bits marked with
an x in Figure 4-12 on page 4-15:

>DI CPTABUI: PR.1,9,4

The following listing from module OAULI will be used in an example
showing how to display a boolean.

TYPE oau_sd_group_data
00a.1

STRUCT
tid trmnl_id, 001.8
cos card_code, 001.8 000.8
sd_pts TABLE(|ext_sd_point|)

 OF PACK(16) oau_sd_funct_desig, 002.0

data_present BOOL 00a.0 000.1
ENDSTRUCT;

This structure is in store at address 3DF69F.

Because the boolean data_present must be displayed, use bit field selection,
as shown in Figure 4-13 on page 4-16.

4-16 Displaying data store

TAM-1001-008 Standard 03.02 December 1993

Figure 4-13xxx
Displaying data using bit selection

• First, use bit field selection. The word offset is A,
the bit offset 0, and the bit width is 1 bit.

>DI 3DF69F.A,0,1
3DF6A9: 0001

• To determine if this boolean is false or true,
use the type name BOOL, which gives:

>DI 3DF69F.A,0,1 BOOL
3DF6A9: Y

Indexing a table
To index a table, the stride must be known and input in decimal. It is
possible to index word size or multiword size and bit tables.

Note: Refer to Tables on page 5-5 for differences in displaying the tables on
the NT40 and SuperNode.

Word size table indexing
The following command string indexes a word size table:

DI storage_reference .nn T x (i)

Where:

nn is the word offset.

T indicates word size table indexing.

x is the size of the stride in DECIMAL (defaults to 1).

i is the index of the desired element in the table. The index can be a
constant or a storage reference (for example, (S.-2)). If the index is
a constant, it is displayed as (&decimal value) or (&#hex value). If
the index is a storage reference to more than one word of store, it is
an error. If no index is specified (for example, if () is entered), an
index of 0 is assumed.

Refer to the example from CPTABUI shown in Figure 4-14 on page 4-17.
The stride of the table is two words.

 Displaying data store 4-17

DEBUG Technical Assistance Manual BCS36 and up

Figure 4-14
Word size table indexing

item 0

item 1

item 2

CPTABUI:PR.9

The following command displays the contents of item 1:

>DI CPTABUI: PR.9 T 2 (&1)

The following example shows how to use word size table indexing. In
module IOLI the following statements are found:

SHARED roundtripinfo TABLE(|0 TO 16|)
 OF unsignedint; 122.0 011.0
%% ----------
%% used to store distribution of round trip message times

The stride is one word. The following command string displays the third
item in this table:

>DI IOUI: SH.122 T 1 ()
00035A: 0000

Bit table indexing
The following command string indexes a bit table:

DI storage_reference .nn BT x (i)
DI storage_reference .nn TB x (i)

Where:

nn is the word offset.

BT or TB
indicates bit table indexing.

x is the size of the stride in DECIMAL (defaults to 1).

4-18 Displaying data store

TAM-1001-008 Standard 03.02 December 1993

i is the index of the desired element in the table. The index can
be a constant or a storage reference (for example, (S.-2)). If the
index is a constant, it is displayed as (&decimal value) or
(&#hex value). If the index is a storage reference to more than
one word of store, it is an error. If no index is specified (for
example, if () is entered), an index of 0 is assumed.

Refer to the example from CPTABUI shown in Figure 4-15 on page 4-18.
The stride of the table is 8 bits.

Figure 4-15xxx
Bit Table Indexing

item 1

item 3

item 5

item 7

item 0

item 2

item 4

item 6

CPTABUI:PR.9

The following command displays the contents of item 5 of Figure 4-15 on
page 4-18:

>DI CPTABUI: PR.9 BT 8 (&5)
057253: 0000

In module OAUUI1 the following declaration in protected store is found:

PROTECTED
ncpalarm_reset_table

TABLE (|0 TO 6|) OF byte, 05d.0 0004.0
ncpalarm_2x57aa_table

TABLE (|0 TO 19|) OF byte, 061.0 000a.0
ncpalarm_table

TABLE (|0 TO 19|) OF byte, 06b.0 000a.0
dead_system_alarm_table

TABLE (|0 TO 19|) OF byte, 075.0 000a.0
dead_system_alarm_2x57aa_table

TABLE (|0 TO 19|) OF byte; 07f.0 000a.0

One of the following command strings will display four elements in table
NCPALARM_RESET_TABLE, in which the offset in protected store is #5D
and the stride is eight bits:

 Displaying data store 4-19

DEBUG Technical Assistance Manual BCS36 and up

>DI OAUUI1: PR.5D BT 8 (&0) N=4
08354A: 0002 0008 0000 0000

or:

>DI OAUUI1: PR.5D TB 8 (&0) N=4
08354A: 0002 0008 0000 0000

Indexing a descriptor
DEBUG easily displays store referenced by a descriptor. When indexing the
descriptor, the stride does not need to be given, because DEBUG reads it
from the descriptor. (This is true for the NT40 but not for SuperNode.)

Note: Refer to Descriptors on page 5-6 for differences in displaying the tables
on the NT40 and SuperNode.

It is possible to display both word size tables and bit size descriptors.

Indexing a word descriptor
The following command string indexes a word descriptor:

DI storage_reference .nn (i)

Where:

nn is the word offset.

i is the index of the desired element in the table. The index can be a
constant or a storage reference (for example, (S.-2)). If the index is
a constant, it is displayed as (&decimal value) or (&#hex value). If
the index is a storage reference to more than one word of store, it is
an error. If no index is specified (for example, if () is entered), an
index of 0 is assumed.

Refer to the table example in Figure 4-16 on page 4-20. The descriptor is in
shared store at offset 20 in module CPTABUI.

4-20 Displaying data store

TAM-1001-008 Standard 03.02 December 1993

Figure 4-16
Displaying the third item of table

CPTABUI:SH.20
 is a descriptor

Descriptor

 points to
item 1

item 2

item 3

The following command displays the contents of the third item of the table
shown in Figure 4-16 on page 4-20:

>DI CPTABUI: SH.20 (&2)
000D40: 0D34 000C 0D24 000F 2CD8 0019 00B9 0008

FFFF 34BE 1770 1568 7FFE 1D4D 0008 0008
0D0B 34BF 4901 0769 0000 5ADE 0000 0000
000C 0000 000F 00B9 0008 0008 0D0B

Descriptors can be used recursively. For example, a descriptor can point to a
descriptor of descriptors. In the preceding example, if item 1 is a descriptor,
then the following command will display the fourth entry of the table
pointed to by item 1.

>DI CPTABUI: SH.20 (&0) (&3)
000003: 0D00

Observe the following code from module OAUUI1:

 Displaying data store 4-21

DEBUG Technical Assistance Manual BCS36 and up

TYPE oau_sd_group_data
00a.1

STRUCT
tid trmnl_id, 001.8
cos card_code, 001.8 000.8
sd_pts TABLE(|ext_sd_point|) OF

 PACK(16) oau_sd_funct_desig, 002.0 008.0
data_present BOOL 00a.0 000.1

 ENDSTRUCT;

PROTECTED
oau_sd_grp DESC OF DESC OF

oau_sd_group_data, 042.0 003.0
oau_sdgp_unprot DESC OF

oau_sdgp_unprot_data, 045.0 003.0
oau_sd_point DESC OF DESC OF

oau_sd_point_data, 048.0 003.0
oau_sd_counts DESC OF DESC OF

int; 04b.0 003.0

The following procedure steps through the declaration for OAU_SD_GRP.

1 At offset #42 in protected store a DESC OF DESC OF
oau_sd_group_data is defined. Observe the following command:
>DI OAUUI1: PR.42 DESC
084975: address 386D46 stride 03 size 0004

This indicates that the descriptor at offset #42 of module OAUUI1 in
protected store points to a table with four elements in it, each element
three words long. The stride must be three words, because the descriptor
at offset #42 points to a table of descriptors.

2 Now display the first entry in this table of descriptors, as follows:
>DI OAUUI1: PR.42 (&0) DESC
386D46: address 3B7085 stride 0B size 0040

This entry points to a table with #40 elements, each element #B words in
size. This table is of type OAU_SD_GROUPDATA. The declaration of
this type is given in the previous example of code from OAUUI1.

3 The TID in type OAU_SD_GROUP_DATA can easily be displayed by
using the descriptors and type name TRMNL_ID. In both tables the first
entry is used, as follows:
>DI OAUUI1: PR.42 (&0) (&0) TRMNL_ID
3B7085: 36 0 1

4 Also the card code can be displayed (using bit field selection) as follows:

4-22 Displaying data store

TAM-1001-008 Standard 03.02 December 1993

>DI OAUUI1: PR.42 (&0) (&0).1,8,8 CARD_CODE
3B7086: 3X82AB

In the following example a storage reference is used to index a
descriptor. The storage reference S has the value 6, so the second value
is 6.

>DI S 000DEF: 0006

>DI IOUI: PR.2E9 (&42) (S) CP_ID
0E899B: CKT RCVRATD 5

In this example a storage reference (the top of stack) is used as the
second index. In this case the second index is 6.

Indexing a bit descriptor
The following command string indexes a bit descriptor:

DI storage_reference .nn B (i)

Where:

nn is the word offset.

B indicates a bit descriptor is indexed.

i is the index of the desired element in the table. The index can be a
constant or a storage reference, for example, (S.-2). If the index is a
constant, it is displayed as (&decimal value) or (&#hex value). If the
index is a storage reference to more than one word of store, it is an
error. If no index is specified (for example, if () is entered), an index
of 0 is assumed.

Refer to the bit table example in Figure 4-17 on page 4-22. The descriptor is
in shared store at offset 15 in module CPTABUI.

Figure 4-17xxx
Displaying the third item of bit table

CPTABUI:SH.15
 is a descriptor

Descriptor

 points to
item 1

item 2 item 3

item 0

item 5 item 6

 Displaying data store 4-23

DEBUG Technical Assistance Manual BCS36 and up

The following command displays the contents of item 2 in Figure 4-17 on
page 4-22:

>DI CPTABUI: SH.15 B (&2)

The following listing is from module IOLI:

TYPE alias_index (|0 TO max_alias_index|); 000.8

PROTECTED node_aliases DESC OF alias_index; 321.0 003.0
 %% allocated [0 to max_node_no] in perm store

node_aliases is a DESC OF type alias_index, which has a size of 8 bits. The
stride can be verified with the following command:

>DI IOUI: PR.321 DESC
02197E: address 207E44 stride 08 size 0080

The following command uses a bit descriptor and displays 10 items starting
at item 3.

>DI IOUI: PR.321 B (&3) N=#A
207E45: 0000 0000 0000 0000 0000 0000 0000 0000
207E49: 0000 0000

Examples of displaying data
Displaying update parameters

The following listing is from module IOLOG:

DCL fill_device_name PROC (nodeno node_number, 001.0
 UPDATES devclass TABLE (|0 TO 7|) OF char, 001.0 004.0
 UPDATES devnum int) IS 003.0 001.0
BLOCK
 DCL space TABLE (|0 TO 15|) OF char, 005.0 008.0
 device_name device_names; 00d.0 004.0

REF and UPDATES parameters are always two words long. REF and
UPDATES create an address on the stack that points to the item’s data area.
The size shown in the listing is the size of the item’s data area referred to by
the address on the stack.

Updates parameter DEVCLASS points to a data area four bytes long. The
following command displays this data area:

>DI SB.1@ N=4
43523A: D289 7600 B321 80FF

4-24 Displaying data store

TAM-1001-008 Standard 03.02 December 1993

Updates parameter DEVNUM points to a data area of one byte. The
following command displays this byte:

>DI SB.3@
7894BC: 0023

Displaying queue problems
This is an example of recursive dereferencing.

In modules QUEUES, IOUI and IOLI the following declarations are found:

Module QUEUES:
TYPE q1way PTR TO q1way; 002.0

Module IOUI:
TYPE cmciobuffer_q q1way; 002.0

Module IOLI:
TYPE cmciobuffer_q_data 007.0

STRUCT
cbd DESC OF cmciobuffer, 003.0
cbh PTR TO cmciobuffer_q, 003.0 002.0
owner id 005.0 002.0

ENDSTRUCT;

SHARED cmciobuffer_qs DESC OF cmciobuffer_q_data; 065.0 003.0

Assume that the user wants to display the contents of the address where
CBH, defined in type CMCIOBUFFER_Q_DATA, is pointing. This can be
accomplished by displaying offset #65 in IOUI using the descriptor. Offset
this value by 3, because CBH is at offset 3 in CMCIOBUFFER_Q_DATA,
and then dereference this value using the following command string:

 >DI IOUI: SH.65 (&1).3 @
 01D347: F4E6

From the preceding listings, note that CBH is a pointer of type
CMCIOBUFFER_Q, which is of type Q1WAY, which, in turn, is a pointer of
type Q1WAY. Hence, a pointer to a pointer is created. Recursive
dereferencing can now be used to follow the pointers, as shown in
Figure 4-18 on page 4-25.

 Displaying data store 4-25

DEBUG Technical Assistance Manual BCS36 and up

Figure 4-18xxx
Recursive dereferencing

>DI IOUI:SH.65 (&1).3 @@ ADDR
10F4E6: 10F357

>DI IOUI:SH.65 (&1).3 @@@ ADDR
10F357: 10F3DC

>DI IOUI:SH.65 (&1).3 @@@@ ADDR
10F3DC: 10F461

>DI IOUI:SH.65 (&1).3 @@@@@ ADDR
10F461: 10F4E6

(Now we are back at the same address where we started.)

>DI IOUI:SH.65 (&1).3@ @ @ @ @ @ ADDR
10F4E6: 10F357

Displaying a field in the CCB
Assume the user wants to know the contents of a particular field in the CCB.
By using successive offsets, any field can be displayed. The following
example shows how the NCOS field is displayed. First, all the offsets are
collected from module CPDATAUI.

TYPE call_condense_block
chb call_handler_block, 03c.0 02c.8

TYPE call_handler_block
%% --------------

STRUCT
xlab translation_block, 024.0

TYPE translation_block PACK (36*16) STRUCT
sourceparms source_parms_area 01f.0 005.0

TYPE source_parms_area
%% ---------------
UNRESTRICTED AREA (5*16)

valid_sourceparms BOOL, 000.1
ncos network_class_of_service, 000.1 000.8

From this example the following information can be extracted:

• CHB is at offset #3c in the CCB.

4-26 Displaying data store

TAM-1001-008 Standard 03.02 December 1993

• XLAB is at offset 0 in the CHB

• Sourceparms is at offset #1f in the XLAB.

• Field NCOS is a bit field in sourceparms at offset 0, bit offset 1 and bit
size 8.

• Register 4 points to the CCB during call processing.

The example in Figure 4-19 on page 4-26 shows how the NCOS was
displayed after a tracepoint was hit in the line error processor.

Figure 4-19xxx
Displaying a field of the CCB

 >DEFINE E1 LLERPRCI LL_ERROR 0
 enter subcommands
 >DI R 4.3C.0.1F.0,1,8 %NCOS

 end of subcommand list of 1 items
 tracepoint E1 defined
 >ACT E1
 tracepoint E1 activated
 >PRINT E1
 TRACEPOINT E1 AT 3D8003:
 LLERPRCI LL_ERROR OFFSET #0003
 PASS 1
 di r 4.3c.0.1f.0,1,8 %ncos
 685B02: 0000

DEBUG Technical Assistance Manual BCS36 and up

5-1

Differences between DEBUG on the
NT40 and SuperNode

This part describes the differences between DEBUG on the NT40 and the
version of DEBUG on SuperNode.

On the SuperNode, DEBUG can run on any Software Operating System
(SOS) node.

Program store
On the NT40, program store is byte-addressable and byte-accessible. On
the SuperNode, program store is byte-addressable and word-accessible.

Because PROTEL was written for the architecture of the NT40, SuperNode
requires more memory than the NT40 for the same amount of work.
However, SuperNode is faster than the NT40. See Figure 5-1 on page 5-2
for an example of the same procedure for the NT40 and SuperNode.

5-2 Differences between DEBUG on the NT40 and supernode

TAM-1001-008 Standard 03.02 December 1993

Figure 5-1xxx
Displaying program store on NT40 versus SuperNode

NT40:

>di ps loctabui change_block_id
127BBA: 0000BPROC L=#02 S=#04
127BBD: 0003PUSH2 #000C(B04)4
127BC1: 0007SAVE2L O=#02
127BC3: 0009NILP
127BC4: 000ATRUES #1A
127BC6: 000CPUSHAS #2(SB)
127BC8: 000EPUSHS #0(SB)
127BCA: 0010PUSHS #1(SB)
127BCC: 0012PUSHB@@L O1=#2 O2=#2 E=#0 W=#7
127BCF: 0015SHIFT E=#F W=#0 (LEFT #1)
127BD1: 0017PUSHT2 #0025(B01) L=#0100
127BD7: 001DCALL@
127BD8: 001ELDREG SSTO=#04AA
127BDB: 0021PUSH2@@L O1=#2 O2=#0
127BDD: 0023JUMPSB #1D
127BDF: 0025PEND

SuperNode:

>di ps loctabui change_block_id
082AEA1C.0000: LINK.W A5,#-$C
082AEA20.0004: CMPA.L ($40F000).L,SP
082AEA26.000A: TRAPCS
082AEA28.000C: MOVE.W D0,-$6(A5)
082AEA2C.0010: MOVE.W D1,-$2(A5)
082AEA30.0014: MOVEA.L D7,A6
082AEA32.0016: MOVE.L $18(A6),-$C(A5)
082AEA38.001C: MOVEA.L -$C(A5),A6
082AEA3C.0020: CMPA.L #-$10000.L,A6
082AEA42.0026: BEQ.B $82AEA72
082AEA44.0028: LEA -$C(A5),A0
082AEA48.002C: MOVE.W -$2(A5),D1
082AEA4C.0030: MOVE.W -$6(A5),D0
082AEA50.0034: BFEXTU $4(A6){0:6},D6
082AEA56.003A: MOVEA.L ($4E7304).L,A4
082AEA5C.0040: CHK.W #$3F,D6
082AEA60.0044: MOVEA.L ($F34,A4,D6.W*4),A6
082AEA66.004A: JSR (A6)
082AEA68.004C: MOVEA.L -$C(A5),A6
082AEA6C.0050: MOVE.L (A6),-$C(A5)
082AEA70.0054: BRA.B $82AEA38
082AEA72.0056: UNLK A5
082AEA74.0058: RTS
082AEA76.005A: NOOP

 Differences between DEBUG on the NT40 and supernode 5-3

DEBUG Technical Assistance Manual BCS36 and up

Data store
On the NT40, data store is word-addressable, word-accessible, and
word-indexible. On the SuperNode, data store is byte-addressable,
word-accessible, and word-indexible.

Compare the DIsplay commands in Figure 5-2 on page 5-3 to see the
differences between NT40 and SuperNode.

Figure 5-2xxx
Displaying data store on NT40 versus SuperNode

NT40:

>DI TRKDUI:PR.1 N=3

SuperNode:

>DI TRKDUI:PR.2 N=3 % Notice the byte addressing

Note: In both cases, N=3 is referring to 3 words.

There is one exception to SuperNode data store being byte-addressable.
When displaying bit fields (less than 16 bits), data store becomes
word-addressable. You must convert the byte offset to a word offset by
dividing the byte offset by two and use it (word offset) as the data store
offset into which you give the starting bit and number of bits to display. See
Figure 5-3 on page 5-3 for an example.

Figure 5-3xxx
Displaying data store (bit fields) on SuperNode

• To look at byte A, bits 4 through 6 of module CPTABUI’s
protected data store, enter the following command string:

>DI CPTABUI:PR.5,4,3 % The 5 is A divided by 2.

Expression stack
The SuperNode expression stack grows from high address to low, whereas
NT40 does the opposite. Thus, offsets from the expression stack for
SuperNode (for example, ‘S.2’) should be positive.

Local variables
On the NT40, local variables are obtained from compiled listings. L.0 is the
first passed parameter or local. The local variables always have a positive
offset.

5-4 Differences between DEBUG on the NT40 and supernode

TAM-1001-008 Standard 03.02 December 1993

On SuperNode, local variables are sometimes kept in registers instead of (or
in addition to) being on the stack. The SuperNode stack is described in
Figure 5-4 on page 5-4.

Figure 5-4xxx
Locals in the SuperNode stack

+ Parameters

+ Return Address

L.0 (SB) A5 Stack Base

- Locals

- Saved Registers

} Stack Mark

Locals are at negative offsets from the stack base, whereas passed
parameters are at positive offsets. Local variable offsets given by listings
may therefore be misleading. The user is advised to disassemble the code
using DIsplay PS if in doubt.

The following commands show how register A5 is used to display local
variables. The two commands provide the same result.

DI L.-4 N=20

DI R A5@.-4 N=20

Registers
The NT40 has base registers. Each base register is designed for a specific
purpose, and most can be examined outside of a tracepoint.

On SuperNode, DEBUG registers are named D0 to D7 (data registers) and
A0 to A7 (address registers). The SP (stack pointer) and SR (status register)
may also be displayed. All registers may be displayed at once using DI R
ALL. These registers are 32-bit hardware registers (except for the SR,
which is 16 bits) which are used to hold data similar to the way the stack
does on the NT40. In order to display the contents of a register in
SuperNode, the user must be in a tracepoint.

When the user issues the following command with SuperNode,

DI R n

n can take on any of the following values:

• A0 • A1

 Differences between DEBUG on the NT40 and supernode 5-5

DEBUG Technical Assistance Manual BCS36 and up

• A2 • A3

• A4 • A5

• A6 • A7

• D0 • D1

• D2 • D3

• D4 • D5

• D6 • D7

• SR • SP

• ALL

The upper or lower word of a data or address register may be selected by
suffixing the register name with U or L (for example, D5L).

Table 5-1 on page 5-5 shows register equivalencies between NT40 and
SuperNode.

Table 5-1xxx
Important register equivalencies

Data
block

Data name in
CPUDEFUI

NT40 base
register

SuperNode
register

SuperNode
address

Common
commands

CCB DATAREG0 R 4 R D7@ 410800@ CCBPTR@

CDB DATAREG1 R 5 410804@ CDBPTR@

EXT DATAREG2 R 6 410808@ ECCBPTR@

PCB BASEPCBRE
G

R 40 41080C@ RUNPPTR@

Note: In SuperNode, the stack base (SB) pointer is in R A5, and the stack
pointer (SP) is in R A7.

Tables
Both the NT40 and SuperNode use word strides for tables, although data
store in the SuperNode is byte-addressable.

The NT40 uses word addresses and bit strides for bit tables. SuperNode
uses byte addresses and bit strides, unless a bit field is specified, in which
case it uses a word address and bit stride. See Figure 5-5 on page 5-6 for
examples of displaying word and bit tables.

5-6 Differences between DEBUG on the NT40 and supernode

TAM-1001-008 Standard 03.02 December 1993

Figure 5-5xxx
Displaying tables on the NT40 and SuperNode

• Assume that CPTABUI:PR.8 is a table with a
stride of 2 words. To look at the fourth through
eighth entries of this table, enter the following
command string:

NT40:

>DI CPTABUI: PR.8 T 2 (&3) N=5

SuperNode:

>DI CPTABUI: PR.16 T 2 (&3) N=5

• Assume that CPTABUI:PR.8 is a bit table with a
bit stride of 8. To look at the fifth entry of this
bit table, enter the following command string:

NT40:

>DI CPTABUI: PR.8 BT 8 (&4)

SuperNode:

>DI CPTABUI: PR.16 BT 8 (&4)

Descriptors
The NT40 descriptor is three words long, made up of a page, address
(offset), size and stride as shown in Figure 5-6 on page 5-6.

Figure 5-6xxx
Descriptor layout on the NT40

SIZE

PAGE STRIDE

OFFSET

The SuperNode descriptor is four words long, made up of a page, address
(offset), size, and upperbound as shown in Figure 5-7 on page 5-7.

 Differences between DEBUG on the NT40 and supernode 5-7

DEBUG Technical Assistance Manual BCS36 and up

Figure 5-7xxx
Descriptor layout on SuperNode

PAGE

OFFSET

used for bit descr.

UPPERBOUND

For the NT40 version of DEBUG no stride has to be specified when using a
descriptor, since DEBUG can read it from the data structure. This is not
possible on the SuperNode version. The display command that uses
descriptors has an additional parameter D followed by the stride.

Enter the following command string to display data using a word descriptor
on the SuperNode:

DI storage-reference .nn D x (i)

And for a bit descriptor:

DI storage_reference .nn BD x (i)

Where:

nn is the word offset.

D indicates the SuperNode version is used.

BD indicates a bit descriptor is indexed using the SuperNode version.

DB indicates a bit descriptor is indexed using the SuperNode version.

x is the size of the stride in decimal. The stride is a word stride for
word descriptors and a bit stride for bit descriptors.

i is the index of the desired element in the table. The index can be a
constant or a storage reference (for example, (S.-2)). If the index is
a constant, it is displayed as (&decimal value) or (&#hex value).

See Figure 5-8 on page 5-8 for an example of an equivalent commands
entered on the NT40 and SuperNode.

5-8 Differences between DEBUG on the NT40 and supernode

TAM-1001-008 Standard 03.02 December 1993

Figure 5-8
Displaying descriptors on NT40 and SuperNode

• Assume that CPTABUI:SH.20 is a descriptor with a
stride of 4. To look at the third entry of where
this descriptor points, enter the following command
string:

NT40:

>DI CPTABUI: SH.20 (&2)

SuperNode:

>DI CPTABUI: SH.20 D 4 (&2)

• Assume that CPTABUI:SH.15 is a bit descriptor with a
bit stride of 4. To look at the second entry of where
this descriptor points, enter the following command
string:

NT40:

>DI CPTABUI: SH.15 B (&1)

SuperNode:

>DI CPTABUI: SH.15 BD 4 (&1)

Note: Because of byte addressing on the SuperNode,
offsets will be different on the SuperNode than on the
 NT40.

See Figure 5-9 on page 5-9 for an example of type declarations for a
descriptor on the NT40 and SuperNode.

 Differences between DEBUG on the NT40 and supernode 5-9

DEBUG Technical Assistance Manual BCS36 and up

Figure 5-9
Descriptors on NT40 versus SuperNode

NT40:

TYPE $DESCRIPTOR PACK (DESCSIZE)
STRUCT

SIZE POSINT, %% ACTUALLY GOES UP TO 65K
OVLY {0 TO 1}
{0}:

STRIDE {0 TO #FF}
{1}:

BITSTRIDE {0 TO 15},
BITOFFSET {0 TO 15}

ENDOVLY,
PAGE ADDRPAGE,
OFFSET ADDROFFSET

ENDSTRUCT;

SuperNode:

TYPE $DESCRIPTOR
STRUCT

ADDRESS $UNIVERSAL_PTR,
OVLY {0 TO 2}
{0}: UNUSED POSINT %L% FOR ALIGNED DESCRIPTORS.
{1}: BITOFFSET POSINT
{2}: CHAROFFSET POSINT
ENDOVLY,
UPPERBOUND POSINT %L% THIS IS MORE CONVENIENT FOR

%L% DESC MANIPULATION.
 ENDSTRUCT;

On SuperNode the upperbound is the size minus one. Therefore an
upperbound of -1 on SuperNode and a size of 0 on the NT40 are equivalent
and are NIL descriptors.

Pointers and addresses
On the SuperNode, addresses and pointers are eight hex digits long (32 bits)
as opposed to six on the NT40 (24 bits).

The NT40 pointer is made up of the offset (one word) and page (8 bits). The
SuperNode pointer is made up of the address (one word) and the page (one
word). Figure 5-10 on page 5-10 gives an example of a type declaration for
a pointer on the NT40 and on SuperNode.

5-10 Differences between DEBUG on the NT40 and supernode

TAM-1001-008 Standard 03.02 December 1993

Figure 5-10
Pointers on NT40 versus SuperNode

NT40:

TYPE $POINTER PACK (PTRSIZE)
STRUCT

OFFSET ADDROFFSET,
FILL {0 to #FF},
PAGE ADDRPAGE

ENDSTRUCT;

SuperNode:

TYPE $POINTER PACK (PTRSIZE)
% --------

STRUCT
OVLY {0 to 1}
{0}: ADDRESS $UNIVERSAL_PTR
{1}: PAGE $INT,

OFFSET $INT
ENDOVLY

ENDSTRUCT;

Tracepoint procedure code offset
Since all procedures start with a 3-byte linkage instruction on the NT40,
DEBUG assumes an offset of #3 bytes if none is given in the DEFine
command. On SuperNode, the default is 0 bytes. This may not give the
desired result, since procedure linkage has not yet been done at this point.
For the majority of procedures, linkage is complete before offset #10 bytes,
so the tracepoint can safely be placed at offset #10 or greater. However, it is
best to display program store first to be certain. Offset #10 is usually a valid
offset, but not always. The problem with the zero byte default is most
apparent when setting a traceback in the tracepoint. If the user places a
tracepoint before the following statement,

LINK.W A5, $#-xx

the caller of the procedure will not be printed in the traceback. This is
because the LINK statement sets up the stack base for this procedure.

The best solution for this problem is to not set up a tracepoint at the default
offset of a procedure. Instead, take the time to display some program store,
and set the tracepoint after the ‘LINK.W A5, $#-xx’ statement.

 Differences between DEBUG on the NT40 and supernode 5-11

DEBUG Technical Assistance Manual BCS36 and up

EXITIFs
EXITIFs work essentially the same on the NT40 and SuperNode, except for
TID_MAP comparison. TID_MAP comparison is one of the most widely
used ways of saving call data on a certain Terminal Identifier (TID). In
SuperNode, the user cannot compare more than one word per EXITIF. See
Figure 5-11 on page 5-11 for an example of an EXITIF on the NT40 and
SuperNode.

Figure 5-11
EXITIFs on NT40 versus SuperNode

NT40:

EXITIF R 4.14 ^= IOUI:PR.234 (&nn)(&tn)

SuperNode:

EXITIF R D7@.28 ^= IOUI:PR.505 D 4(&nn) D 2 (&tn)
EXITIF R D7@.2A ^= IOUI:PR.505 D 4(&nn) D 2 (&tn).2

The user can, however, EXITIF on all 32 bits of a register, as is done in the
following command:

EXITIF R D2 = �

DEBUG Technical Assistance Manual BCS36 and up

6-1

List of terms
Absolute Address

An address in a computer language that identifies a storage location or a
device without the use of any intermediate reference. An address that is
permanently assigned by the machine designer to a storage location.
Synonymous with Explicit Address, Machine Address, and Specific
Address.

Buffer
A storage device used to compensate for a difference in rate of data flow or
time of occurrence of an event when transmitting data from one device to
another.

Call Condense Block (CCB)
A data block that is associated with a call from initiation through
completion. The CCB contains enough information to describe a basic call,
and can be extended for calls that require more data.

Call Condensing
Consists of a) condensing the data stored in the Call Data Block (CDB) so
that only the information necessary to handle further functions associated
with the call is retained; and b) idling the process previously associated with
the call and freeing the CDB.

Call Data Block (CDB)
A data block that is associated with a call only while it is being processed.
The CDB has the capability of being extended if required.

Call Processing
The software system that handles the processes involved in setting up
connections through the DMS-100 Family network between calling and
called parties.

Call Processing Identifier (CPID)
Uniquely identifies a call processing agent. The CPID consists of two parts
a) a call processing selector, which is a number that identifies a particular

6-2 List of terms

TAM-1001-008 Standard 03.02 December 1993

call processing agency b) an agent identifier that identifies a specific agent
within the agency.

CC
Central Control

CCB
Call Condense Block

CDB
Call Data Block

Central Control (CC)
Comprises the data processing functions of the DMS-100 Family, with
associated data store and program store.

CI
Command Interpreter

CLLI
Common Language Location Identifier

Common Language Location Identifier (CLLI)
A standard identification method for trunk groups in the form:

aaaa bb xx yyyy

Where:

aaaa is City Code.

bb is Province/State Code.

xx is Trunk Group Identity.

yyyy is Trunk Number.

Command Interpreter (CI)
A support operating system component that functions as the main interface
between machine and user. Its principal roles are;

1 to read lines entered by a terminal user

2 to break each line into recognizable units

3 to analyze the units

4 to recognize command input-numbers on the input lines

5 to invoke these commands.

 List of terms 6-3

DEBUG Technical Assistance Manual BCS36 and up

CPID
Call Processing Identifier

Data Store
The main data memory for the DMS-100 Family system. The data store is
part of the Central Control Complex and contains transient information on a
per-call basis as well as customer data and office parameters.

Directory Number (DN)
The full complement of digits required to designate a subscriber’s station
within one NPA - usually a three-digit Central Office code followed by a
four-digit station number.

DN
Directory Number

DS
Data Store

DISPCALL
Display Call

Display Call (DISPCALL)
A debugging tool that captures data associated with death of a call, a call
being held for trouble analysis, or a call in progress. The formatted output
displays the Call Condense Block (CCB) and the Call Data Block (CDB).

EXT
Extension Block

Extension Block (EXT)
In DMS-100 Call Processing, used to provide additional data space for a
Call Condense Block (CCB) or a Call Data Block (CDB).

Index
1) In DMS, a piece of information by which a particular tuple in an internal
schema table is identified. There is no ordering associated with an index and
no concept of a used or unused index. (All indices in the index range are
valid.) 2) A 15-bit field containing the two-part descriptor index of the Call
Condense Block.

Line Equipment Number (LEN)
Composed of the site, frame number, unit number, drawer number, and
circuit number. For example, the LEN HOST 00 0 05 08 has the site HOST,
frame number 00, unit number 0, drawer number 05, and circuit number 08.

6-4 List of terms

TAM-1001-008 Standard 03.02 December 1993

LEN
Line Equipment Number

Maintenance and Administration Position (MAP)
A group of components that provide a Man-Machine Interface between
operating company personnel and the DMS-100 Family systems. A MAP
consists of a Visual Display Unit and keyboard, a voice communications
module, test facilities, and MAP furniture. MAP is a trademark of Northern
Telecom.

MAP
Maintenance and Administration Position

Node
Any unit that can accept or originate messages.

Node Number
A system assigned number unique to a node.

PCB
Process Control Block

Peripheral Module (PM)
A generic term referring to all hardware modules of the DMS-100 Family
systems that provide interfaces with external line, trunk, or service facilities.
PMs contain Peripheral Processors which perform local routines, thus
relieving the load on the Central Processing Unit.

Peripheral Module Intercept System Test (PMIST)
A debugging tool that traces messages between the Peripheral Modules.

PM
Peripheral Module

PMIST
Peripheral Module Intercept System Test

Procedure
In DMS, a block of PROTEL statements with a single entry and single exit.

Process Control Block (PCB)
A block of data used by the operating system to keep track of the status of a
process. There is a unique PCB for each process in the system.

 List of terms 6-5

DEBUG Technical Assistance Manual BCS36 and up

Program Store (PS)
In DMS, programmed instructions for the various procedures required to
perform processing, administration, and maintenance.

PROT
Protected Store

Protected Store (PROT)
In DMS, data store type that must be explicitly unprotected prior to any
write-operation and protected again afterwards. This type of store remains
allocated over all restarts. PROT is used to hold the office data base and
translation data equipment configurations.

PS
Program Store

Terminal
1) Refers to both the interface circuit on a circuit card mounted in a PM unit
and the device it is connected to. Devices include telephone sets, trunk
circuits, and data links. 2) An external connection to the DMS system.

Terminal Identifier (TID)
The node number and the terminal number.

Terminal Number
A number given to a specific terminal attached to a node.

TID
Terminal Identifier

Tracepoint
An interruption in the flow of a software program to collect information. A
tracepoint causes a program to branch to system code to collect information
and then return to the original program to continue execution.

User
A person, organization, or other group that uses the services of a DMS
switch.

DMS-100 Family

DEBUG
Technical Assistance Manual

 1988, 1989, 1991, 1993 Northern Telecom
All rights reserved.

NORTHERN TELECOM CONFIDENTIAL: The
information contained in this document is the property of
Northern Telecom. Except as specifically authorized in writing
by Northern Telecom, the holder of this document shall keep the
information contained herein confidential and shall protect same
in whole or in part from disclosure and dissemination to third
parties and use same for evaluation, operation, and
maintenance purposes only:

Information is subject to change without notice. Northern
Telecom reserves the right to make changes in design or
components as progress in engineering and manufacturing may
warrant.

DMS, DMS SuperNode , MAP, and NT are trademarks of
Northern Telecom.

Publication number: TAM-1001-008
Product release: BCS36 and up
Document release: Standard 03.02
Date: December 1993

Printed in the United States of America

	Beginning of Document
	Contents
	About this document
	Software Identification
	How to identify the software in your office

	Reason for Reissue
	References
	Where to find information
	Prerequisite References
	Informative References

	NT and BNR trademarks and the products they represent
	Effect on Switch
	What precautionary messages indicate
	How commands, parameters, and responses are represented
	Syntax Notes

	DEBUG utility
	DEBUG access level
	When to use DEBUG
	Displaying program and data store
	Setting tracepoints
	Example use of DEBUG

	Restrictions and limitations
	Informative references

	Determining terminal and node numbers
	Node and terminal numbers
	Terminal
	Calculations

	DEBUG commands and subcommands
	Accessing DEBUG
	CI level commands
	DEBUG execs ($READ command)
	Adding comments
	DEBUG command description
	ACTIVATE
	Responses
	Usage notes
	ALLOC
	Responses
	BIND
	Responses
	CLEAR
	Responses
	Usage notes
	CPID
	Responses
	Usage notes
	DEACTIVATE
	Responses
	DEFINE
	Responses
	Usage notes
	DELBIND
	Responses
	Usage notes
	DISPLAY (data store)
	Responses
	Usage notes
	DISPLAY PS (program store)
	Responses
	EXTEND
	Responses
	FDEFINE
	Responses
	Usage notes
	GO
	Responses
	HELP
	Responses
	LIMIT
	Responses
	LISTBIND
	Responses
	PRINT
	Responses
	QUIT
	Responses
	RESET
	Responses
	Usage notes
	SHELP
	Responses
	STATUS
	Responses

	Tracepoint subcommands
	ACTIVATE
	Responses
	Usage notes
	BIND
	Responses
	Usage notes
	DEACTIVATE
	Responses
	DISPLAY CCBPTR, ECCBPTR, CDBPTR, and RUNPPTR
	Responses
	DISPLAY (data store)
	Responses
	Usage notes
	EXITIF
	Responses
	Usage notes
	SAVECCB
	Responses
	Usage notes
	SAVECDB
	Responses
	Usage notes
	SAVEEXT
	Responses
	Usage notes
	TIMESTAMP
	Responses
	TRACEBACK
	Responses
	Usage notes

	Displaying data store
	Format of DEBUG output from DISPLAY command
	Specifying an offset in a module
	Displaying contents of an absolute address
	Displaying local variables and parameters
	Output of multiple items
	Using the dereference operator @
	Bit field selection
	Indexing a table
	Word size table indexing

	Indexing a descriptor
	Indexing a word descriptor
	Indexing a bit descriptor
	Displaying queue problems
	Displaying a field in the CCB

	Differences between DEBUG on the NT40 and SuperNode
	Program store
	Data store
	Expression stack
	Local variables
	Registers
	Tables
	Descriptors
	Pointers and addresses
	Tracepoint procedure code offset
	EXITIFs

	List of terms
	R

